Experiences with DERIVA: An Asset Management
Platform for Accelerating eScience

Alejandro Bugacov, Karl Czajkowski, Carl Kesselman, Anoop Kumar, Robert E. Schuler, Hongsuda Tangmunarunkit

Information Sciences Institute
Viterbi School of Engineering
University of Southern California
Marina del Rey, CA 90292
Email: {bugacov,karlcz,carl,anoopk,schuler,hongsuda} @isi.edu

Abstract—The pace of discovery in eScience is increasingly
dependent on a scientist’s ability to acquire, curate, integrate,
analyze, and share large and diverse collections of data. It is all
too common for investigators to spend inordinate amounts of time
developing ad hoc procedures to manage their data. In previous
work, we presented DERIVA, a Scientific Asset Management Sys-
tem, designed to accelerate data driven discovery. In this paper,
we report on the use of DERIVA in a number of substantial and
diverse eScience applications. We describe the lessons we have
learned, both from the perspective of the DERIVA technology,
as well as the ability and willingness of scientists to incorporate
Scientific Asset Management into their daily workflows.

I. INTRODUCTION

While much attention has been given to the process of
publication, citation, and access of curated scientific data in
shared data repositories [1], little attention has been paid to
the data management needs that show up in daily practice of
data-rich scientific collaborations that lead to sharable data. In
current practice, scientists organize and share data via ad hoc
directory structures, coding critical metadata via a combination
of file naming conventions, text files, or spreadsheets. As a
result, data generated during the course of an investigation
may be lost, mislabeled, regenerated or misused because it
cannot be found or correctly identified. Frequently data are
generated by scientists who are not experts in information
systems, and they are overwhelmed by the complexity of data
management tasks. Taken together, the lack of robust tools
and mechanisms for data management contribute to significant
investigator overheads [2] and unreproducible data [3].

Efficient creation of high-quality, reusable and sharable
data would clearly benefit from tools and processes that
reduce the complexity and overhead of collecting, organizing
and preparing data for data-driven scientific investigations.
We have argued that a data management approach based
on scientific digital asset management [4] can significantly
streamline the process of managing complex and evolving
data collections, and in doing so, accelerate “knowledge
turns [5]” for scientific discovery. Digital asset management
systems (DAMS) enable the management tasks and decisions
surrounding the “ingestion, annotation, cataloging, storage,
retrieval and distribution of digital assets [6].” Our hypothesis
is that a DAMS platform tailored for eScience could have

a similar impact as commercial DAMS products have had
in professional media and creative industries — transforming
how scientists interact with their data on a daily basis, making
them more efficient and effective.

To test this hypothesis, we have developed Discovery En-
vironment for Relational Information and Versioned Assets
(DERIVA), a platform which provides an end-to-end ecosystem
for managing scientific data from acquisition through analysis
and publication. Using DERIVA, we have conducted a multi-
year study on the impact of these techniques within the context
of diverse data-driven scientific collaborations at scales span-
ning from small basic research investigations to international
data sharing consortia. To evaluate the effectiveness of the
scientific asset management based approach, we examine its
use in detail in two representative use cases.

This paper makes the following contributions. We:

o summarize the features of DERIVA, a platform designed
to increase the productivity of data driven scientific
discovery via digital asset management concepts,

o show how a single platform for asset management can
be configured and applied to distinct scientific discovery
domains, and

« describe how daily workflows of diverse domain scientists
have been improved by incorporation of scientific asset
management systems.

The rest of this paper is organized as follows. In Section II
we discuss key requirements for scientific asset management.
In Section III, we describe DERIVA, our platform for scientific
asset management. In Section IV, we discuss DERIVA and
the FAIR guidelines. In Section V, we describe two DERIVA
use cases in detail. We then summarize key lessons learned
from our experiences in Section VI. We review related work
in Section VII and conclusions in Section VIII.

II. SCIENTIFIC ASSET MANAGEMENT REQUIREMENTS

Based on an analysis of a broad set of potential use cases,
we propose that an eScience DAMS ecosystem should provide
the following capabilities:

Acquisition of diverse scientific assets. Data and metadata
may be sourced from legacy data sets, outputs of computa-
tions, specialized instruments and instrument control software,



existing databases and lab information management systems,
or sources like spreadsheets, text files, and manual data entry.

Model-driven organization and discovery of assets. A
scientific DAMS must support diverse models that evolve over
time. DAMS systems in the consumer space provide users with
intuitive and interactive ways of organizing and discovering
assets structured by an underlying model. Unlike music, for
example, where there is a well understood domain model (e.g.
albums, artists, composers, tracks), the models for scientific
investigations may vary radically from instance to instance
and change over time as the discovery process unfolds.

Storage and retrieval of eScience data assets. Assets
may be very large, and may be physically distributed in local,
enterprise, and cloud based storage systems.

Rights management and access control. Scientific data
sharing may involve data use agreements, access to proprietary
data, time driven data embargoes, and different user roles
within and across collaborations. Access control and associ-
ated policy may be required at levels of granularity that go
from an entire data set, to a single data element, both for data
assets and metadata.

Integration into analytics ecosystem. Data driven discov-
ery is the result of repeated knowledge turns, which consume
existing data and produce derived data and/or metadata which
may be ingested as new assets. Users must be able to identify
the data that is required for a knowledge turn, assemble and
export relevant data for consumption by diverse computational
tools and re-ingest the results.

III. THE DERIVA PLATFORM

To address the requirements detailed above, we have created
a collaborative scientific asset management platform called
DERIVA. The platform is designed to support collaboration
through the full life-cycle of scientific data including initial
experiment design; prototype and production data acquisition;
ad hoc and routine analyses; and publication.

Core principles underlying the design of DERIVA are:

« loosely coupled web services architecture with well de-
fined public interfaces for every component,

o use of Entity Relationship Models (ERM) that leverage
standardized vocabularies, with adaptive components that
can automatically respond to evolving ER models,

« model-driven user interfaces to enable navigation and
discovery as the data model evolves,

« data-oriented protocols where distributed components co-
ordinate complex activities via data state changes.

DERIVA uses an entity-relationship data model to catalog
and organize assets which may be digital objects (i.e. files)
or references to physical objects, such as proteins or mice.
Assets are characterized by contextualizing metadata which
places an asset into the model by relating it to a specific entity.
Additional descriptive metadata are used to describe additional
attributes and relationships between assets. Figure 1 illustrates
the DERIVA architecture. We summarize each component
below. More details are provided in [4].
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Fig. 1. DERIVA architecture consisting of metadata catalog (ERMREST),
object storage (HATRAC), web applications (CHAISE), ingest/export and
automation agents (IObox), and policy enforcement and authentication.

A. ERMREST: Model-Neutral Relational Metadata Store

Entity Relationship Model via Representational State Trans-
fer (ERMREST) provides a relational metadata store as a
web service, allowing general entity relationship model-
ing and manipulation of data resources via web protocols.
ERMREST enables the evolving and dynamic data models
needed for describing, contextualizing, and linking scientific
assets. ERMREST is designed to organize and contextualize
large-scale data assets that are stored in the HATRAC object
store or other cloud based storage systems (e.g., Amazon S3).

ERMREST is a multi-tenant system where catalogs may be
provisioned for separate tenants, each with its own access-
control lists (ACLs), ERM, and content following that model.
Unlike conventional data management solutions which are de-
signed or deployed with a priori knowledge of the data model,
ERMREST continuously adapts, providing service interfaces to
initiate and immediately reflect ERM changes.

To enable concurrent activities and controlled collaboration,
ERMREST enforces fine-grained access and update policy on
models and content. Cloud-based authentication and group
management is used to assign users to roles [7]. Different
policies for model visibility, query, insert, update and delete
can be set on an entity type (table) or on specific attributes
(columns). Dynamic policies can also consult data values,
further differentiating access decisions for individual entities
(rows) or entity classes (rows sharing a common coded value).
Since dynamic policies consult data, sufficiently trusted users
can alter policy by editing the associated data values, allowing
for complex social scenarios such as rights delegation.

B. HATRAC: Version-Tracking Object Store

While assets may be stored in file systems or general cloud
storage, scientific data benefits from additional assurances such
as data immutability and integrity. HATRAC is a specialized
object store that provides a service interface to create and ac-
cess immutable objects. Objects are organized into hierarchical
namespaces and access can be granted to entire namespaces



or to individual objects. End-to-end checksumming in the
protocol ensures integrity. HATRAC can be deployed on a
conventional Linux server or cloud hosted as an interface to
Amazon S3 or compatible object stores.

C. CHAISE: Model-Driven Web Applications

CHAISE is a suite of dynamic, model-driven, Web ap-
plications for searching, browsing, importing, editing, and
exporting digital assets and metadata. CHAISE introspects the
current ERM stored in an ERMREST catalog and dynami-
cally generates complex user interface applications for various
modes of interaction. Current CHAISE applications are:

e RecordSet generates a faceted search interface, enabling
users to find entities via criteria such as attribute values
or relationships;

e Record generates a detailed presentation of the selected
entity in the model along with data connected to the entity
via its relationships in the model; and

e RecordEdit generates a multi-record entry and edit appli-
cation for creating and curating metadata records.

Relationships in the data model can be traversed as navigable
links, enabling the user to interactively explore the data, for
example, going from a biosample to individual observations
that have been made on the biosample. CHAISE has integrated
support for vocabulary terms, promoting reuse of existing
terms or controlled vocabulary, while providing a means for
dynamically adding new terms as needed.

CHAISE is highly extensible via its integrated Markdown
renderer and Mustache [8] template engine with built-in plu-
gins we developed for including i frame elements. Through
this feature, CHAISE applications can integrate virtually any
standard Web components to customize a DERIVA deployment
to its use case requirements. For example, we routinely add
data visualizations such as scatter plots, histograms, as well
as specialized data viewers such as volume renderers.

D. 10box: Data-Driven Workflow Agent

DERIVA automates data-driven workflows via its IObox
framework as depicted in Figure 2. It supports three different
usage scenarios for ingest and extract operations. 1) Data are
generated by a scientific instrument such as a microscope or
sequencer. An agent monitors a directory for incoming files
and automatically uploads them to DERIVA, much like new
photos are imported into a photo album from a smartphone
without user intervention. 2) Data are generated by an external
data system such as a laboratory information system. An agent
extracts, transforms and loads (ETL) relational data to DERIVA
based on a predefined configuration, e.g. nightly or when
data entries are of a certain status. 3) Data are generated by
arbitrary means and are located on a file system. For bulk
assets, e.g. a batch of files, an interactive graphical client can
be used to examine the assets, extract necessary metadata
and ingest the assets, notifying the user immediately if it
fails. For infrequently generated assets, users use the CHAISE
RecordEdit tool to identify where in the data model the assets
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Fig. 2. IObox enabled workflow depiction. Boxes indicate key operations
performed by IObox while interactions and data flow are indicated by arrows.

should be tracked, manually input appropriate metadata, and
upload the files.

IObox provides two general mechanisms for interfacing
with external computational agents via its subset and ex-
port operations. 1) Condition-Action (CA) processing asyn-
chronously initiates agent execution based on the catalog state.
Agents may be co-located with ERMREST or distributed to
remote servers or the cloud. And 2) BDBag [9] asset export
allows the user to bundle data collections for use in other
analysis tools, such as Python, R, or platforms such as Galaxy.

A key aspect of these tools is that they “contextualize”
the asset within the research protocol that produced it. Our
general strategy is to link and annotate an asset as accurately
as possible when it is initially acquired. For example, a BAM
file containing RNA-Seq data should be associated with the
specific replicate, sample, and experiment. The general steps
are to introspect the data model, and then infer additional
details from the asset contents such as its file name, who/what
produced the file, a barcoded label, and/or embedded file
metadata to properly contextualize the asset. Finally, to ensure
immutability, the asset itself is typically copied into the
HATRAC object store. Given the model agnostic approach of
DERIVA, the IObox framework is readily adapted and extended
through configuration parameters or Python scripting.

IV. DERIVA AND “FAIR” GUIDELINES

The FAIR Data Principles are guidelines for scientific data
designed to promote data reuse and to enhance “the ability of
machines to automatically find and use the data, in addition
to supporting its reuse by individuals.” [10]. These principles
state that data should be Findable, Accessible, Interoperable,
and Reusable. However, FAIR is not only desirable for pub-
lished repository data, but for any data produced in an eScience
investigation, at any point in time, regardless of the scope
over which the data are shared or reused. Discovery will be
accelerated, if data are FAIR at each step of a data driven
eScience process. With this in mind, a goal of DERIVA is to
provide a foundation on which each data generation stage of
a discovery process produces FAIR data.

Instead of storing assets as unstructured data, each commu-
nity defines their digital assets, their associated properties and
relationships (i.e. metadata) through an ER Model (‘F’, ‘R’)
leveraging controlled vocabularies. All assets and key metadata
entries are assigned unique accession numbers, are referenced
by globally unique resource names and are explicitly linked
(‘F’, ‘R’). DERIVA exposes the ERM, provides web APIs
and interfaces for users and user agents to accurately find



TABLE I
SUMMARY OF REPRESENTATIVE DERIVA DEPLOYMENTS.

Key Entities Assets
Name Types Count | Types Count | TiB
FaceBase 6 6,598 13 2,773 2.6
RBK 10 501 4 763 | 0.58
GUDMAP 4| 23,186 4| 35334 | 0.6
GPCR 7 | 180,481 17 | 232,078 | 0.06
Synapse 4 1,675 9 1,906 1.7
CIRM 4 | 28,740 1 5,429 17

those assets using faceted and basic text search (‘F’, ‘A’).
All assets and data are accessible, subject to the community
access control policy (‘A’). The metadata can be exported in
standard CSV and Baglt [9] formats, while the digital assets
are submitted and made available in standard formats defined
by the community (‘I’, ‘R’).

V. USE CASES

DERIVA has been used in scientific collaborations spanning
from small teams engaged in data collection and analysis for
basic science, to large, multi-national consortium producing
data repositories. Table I provides some basic statistics across
a number of of these deployments. Shown are the number of
different types of key entities currently being used to represent
the domain model, the number of records corresponding to
those entities, the number of different asset types, and the
total number and size of the assets currently being managed
by the system.

In this section, we explore in more detail how DERIVA
has been used in practice in two specific use cases: FaceBase
and GPCR. The FaceBase consortium represents a large-scale
deployment involving a multi-site collaboration and commu-
nity curation and data sharing endeavor. The GPCR represents
complex, distributed collaboration and early-phase exploratory
research. RBK and GUDMAP are projects related to molecular
anatomy and are similar to FaceBase, while Synapse and
CIRM are basic science projects similar in nature to GPCR.

A. FaceBase

1) Overview: FaceBase (www.facebase.org) is a craniofa-
cial research consortium that produces and shares compre-
hensive craniofacial data and resources for the international
research community. The consortium is organized around a
“hub and spoke” model where 20 spokes create and contribute
data while the Hub is responsible for integrating this data into
a curated collection to be used by the broader craniofacial
research community. Data in FaceBase are diverse as the
spokes engage in a wide range of investigations including
imaging, confocal microscopy, laser capture microdissection,
DNA microarray, high-throughput sequencing, and enhancer
reporter studies involving mouse, zebrafish, and human sub-
jects. Spokes are expected to release data immediately to the
public upon their production without embargoing data for their

own research. As such, timely release of data is among the
critical goals of FaceBase.

2) Challenges: Prior to adopting DERIVA, FaceBase took
a manual, centralized approach to curation using Drupal as
a Content Management System (CMS) for storing and dis-
playing metadata coupled with Apache Lucene for keyword
search of metadata. Data were submitted to the hub zipped
in bundles that typically contained 5-20 individual files each,
which were stored on and served from a standard Web server.
Hub curators entered free form text descriptions in the CMS
with a set of “tags” and a link to the zip file. Tags covered
information about the species, age stage, anatomy, phenotype,
and other descriptive properties about the data set. Users of
the FaceBase site could perform keyword searches over the
content and some limited filtering on tags.

The initial approach to curation and publication of data
suffered significant limitations. The key problems and user
complaints included:

o limited resources for centralized curation at the Hub
resulted in long delays before data set release and the
curation process was susceptible to transcription errors
leading to additional delays;

e lack of a detailed data model for describing data sets
led to inconsistencies in the quality and level of detail
for data set descriptions between different data produc-
ers, for example, the relationship between files and the
bioassays that produced them or the biosamples to which
they related could only be inferred from “meaningful”
filenames with gene names, age stages, and other critical
details embedded in them:;

o difficulty finding and narrowing search results due to:
keyword search could return many “hits” but not allow
users to narrow through precise filtering; hand coded
lists of dataset properties that looked like but were not
structured metadata tags in the CMS; inconsistent, non-
standard, or misspelled terms.

FaceBase was restructured to use a scientific asset manage-
ment based approach to achieve the following goals:

« streamline and accelerate the curation pipeline so that
data sets should be made available almost as fast as they
are produced;

« simplify the sometimes cumbersome interactions between
submitters and curators that often plagues large reposito-
ries;

o reduce the effort and resource load on the Hub by
distributing the curation responsibilities among the par-
ticipating spoke projects rather than assuming all curation
tasks at the Hub; and

« increase the ability of users to find data of interest via
intuitive data models coupled with faceted search and
linked data navigation.

3) Implementation: The application of DERIVA to Face-
Base was complicated by the need to transition the data and
processes from the existing Drupal based approach to ours.
We took a staged approach:
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biosample, bioassay, and asset entities with relationships indicated by arrows.

e An initial data model that mirrored the original data
representation was created and a one off ETL (extract,
transform, and load) process was developed to move all
of the existing data from the CMS to an ERMREST
catalog and HATRAC object store. Data was left in its
initial format as a set of zip files.

o An ensuing clean up of terms was performed as aided by
CHAISE to display alphabetized term lists directly from
the catalog which revealed inconsistencies (e.g., “Msx1”
vs “MSX17).

« A new more detailed data model was developed that was
more representative of the structure of the actual and new
data being provided.

o As the transition was taking place, spokes used spread-
sheet templates to describe metadata while the Hub took
responsibility for updating the catalog using IObox.

o A curation protocol has been established to streamline the
process, and going forward the spokes will use IObox and
CHAISE to directly upload and curate newly contributed
data following the protocol.

Schema evolution. The Hub evolved the initial database
schema to a structure that could represent the detailed infor-
mation about the experiments, assays, samples, subjects and
assets submitted by the spokes. The new model was informed
by established conventions found in “Chado” [11] and “ISA”
(Investigation Study Assay) [12] while accommodating the
constraints imposed by the legacy database. The conceptual
data model for FaceBase is depicted in Figure 3.

Curation pipeline. To release data to the broader community
as rapidly as possible, FaceBase has implemented a three
stage pipeline, where datasets are either pending, released,
or curated. Fine grain access control in ERMREST is used
to control visibility, allowing spokes to upload data and edit
metadata until data quality standards are met at which point
the data or metadata are made visible and publicly available
to users. Curation stages are explicitly represented in the data
model.

Dataset accessioning. The curation pipeline (see Figure 4)
begins with investigators notifying the Hub that they wish to
submit data. The spoke’s request must include basic metadata
which cover essential details, similar to what may be found
in Dublin Core or other data publication standards. The Hub
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Fig. 4. FaceBase Data Curation Pipeline. Shaded boxes indicate Spoke
responsibilities versus clear boxes for the Hub’s activities.

then mints an accession number and creates a Dataset
entity in the database which begins in a “pending” state. This
pending dataset record serves the dual purpose of anchoring
the curation process and all communication concerning it, and
establishing a “landing page” for the dataset.

Data acquisition. In the pending stage, data sets are sub-
mitted by the spokes using an IObox batch uploader or by
transferring files to a hosted IObox operated by the Hub. IObox
automatically extracts key information, such as file names and
checksums, and registers the data files in the relevant fields
in the data model. Thumbnails and 3D mesh files are stored
in separate HATRAC namespaces with relaxed access control
policies compared to general assets which FaceBase restricts
to logged in end-users. In addition, genome tracks are stored
under a namespace that serves as a virtual “trackhub” for
the UCSC Genome Browser [13] and an embedded jBrowse
Genome Browser [14]. Once ingested, the Hub reviews the
data. If the consortium’s data quality standards are met, the
Hub updates the data set’s status to “released” and the assets
are made visible to the end-users.

Metadata curation. Metadata may be entered using CHAISE
or submitted in spreadsheets to the Hub for processing via
the hosted IObox at any time in the process. In the interest
of streamlining the release of data to the public, the process
focuses on curating metadata after the data are released. The
Hub currently uses CHAISE for curation of the catalog and has
begun training the spokes in its use so that they may directly
enter metadata, with access control policies in ERMREST to
control editing and visibility permissions. Once metadata are
entered in the database, Hub staff review the entries to ensure
that data quality standards have been satisfied and then upgrade
the dataset to “curated” status. At this point, the complete
dataset, its data and metadata, are fully available to the public.

4) Results: The implementation of DERIVA has signifi-
cantly impacted every aspect of how FaceBase curates and
publishes data sets.

o Structured, detailed data models now allow every indi-
vidual asset to be represented in the database along with
critical information about biosamples and bioassays;

o Alignment with community ontologies (e.g., OBI, MP,
HPO, ZFA, Theiler stages, etc.) and integration with
the Monarch Initiative’s Phenogrid [15] have transformed
FaceBase from a data silo to an interoperable data
resource where data sets can be integrated with data



produced outside of the consortium;

o Powerful, dynamically generated search and browse inter-
faces now allow users to find and narrow searches using
any attribute of any key entity in the database and then to
navigate in a “linked data” style through the entire web
of information in the database.

Quantifiable metrics indicate significant progress toward
FaceBase goals:

o FaceBase spokes have been able to publish data with
detailed descriptions on 1,155 biosamples and 4,736
bioassays, up from essentially O using the prior approach;

o FaceBase now measures its data curation cycle time in
days rather than months meaning that users get access to
new data sets rapidly;

o Users now visit the new FaceBase data browser more than
any other resource on the site accounting for 32.5% of
unique page views with an extremely low bounce rate of
22.2%;

« and most critically, in the past two years alone, FaceBase
usage has grown from 4,699 unique users to 7,905 unique
users with a two year total of 71,076 page views and
19,371 user sessions.

B. GPCR Consortium

1) Overview: G-protein-coupled receptors (GPCRs) play
a critical role in a wide variety of human physiology and
pathophysiological conditions. As a drug target, GPCRs are
highly valuable with an estimated 30-40% of all drugs on
the market, but mechanistically poorly understood. The best
method to determine three dimensional GPCR structure is via
X-Ray crystallography. However, the native form of a GPCR
may not form a stable crystal, so many slight mutations, called
constructs, are designed and evaluated. For each construct, the
protein is synthesized using bacteria, and various tests (assays)
using techniques such as flow cytometry, chromatography, and
gel electrophoresis images are used to measure the quality,
quantity and stability of the resulting proteins. Protein crystals
are evaluated using high energy light sources, and its structure
determined by analyzing the diffraction patterns.

The GPCR Consortium was formed to systematically eval-
uate a large number of GPCR structures. The consortium
consists of three academic sites and five commercial partners.
Given the data diversity, the complexity of the experimental
process, and the scale and distribution of the GPCR Consor-
tium effort, the conventional approach to data management
would pose a significant obstacle to the goals of the consortium
and so a data management solution based on DERIVA was
developed for organizing all consortium experiments and data.

2) Challenges: The three academic sites, one in the US and
two in China, are responsible for conducting GPCR research
and generating the experiment data for the consortium. Within
each academic site there are typically separate teams devel-
oping biomasses (bacteria that express the desired protein)
and conducting the experiments. Each academic site maintains
a local database system to keep track of construct design
and biomass production conducted locally. Prior to using
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Fig. 5. Select elements of GPCR catalog model. From top to bottom, four
tiers of entities and relationships have been added in phases: core protein
concepts; core assets including alignment and expression data; experiment
metadata; and experiment assets capturing experimental results.

DERIVA, all of the assays associated with the experimental
process were managed in an ad hoc fashion, with each scientist
copying all of her assays into an ad-hoc directory structure,
recording the metadata in lab notebooks, etc. As a result,
when examining previous experiments, we observed numerous
instances in which a) assays for an experiment could not be
located, b) experiment metadata associated with an assay could
not be determined, c) construct designs were repeated, and
d) experiment results were inconsistently noted. In addition,
there was no mechanism to implement consortium-wide access
control policies.

3) Implementation: The GPCR data model was incremen-
tally developed. Figure 5 illustrates essential parts of the
catalog data model comprised of four tiers of entity types
and relationships developed in phases: A core ERM captures
the domain of GPCR targets, constructs, and biomasses; core
asset metadata tracks alignment and flow cytometry data
files; experiment metadata tracks experiment processes; and
most recently, experiment asset metadata are beginning to
track electrophoresis, stability, and chromatography data files.
Concurrent with these major phases of model expansion, we
also engaged the early users to review and refine the elements
within each tier.

Construct design acquisition. The construct and biomass
data are stored in the local database systems. We use IObox
relational export and import agents to ingest these databases
nightly to maintain a harmonized, multi-site record of core
entities in the shared catalog.

Experiment design. Contrary to the previous practice where
the experiment details were noted in individuals’ spreadsheets,
scientists were asked to use the CHAISE RecordEdit tool to
enter experiment related metadata such as experiment design,
associated samples, purification protocols, or chemical compo-
sition (represented by the experiment entities). Figure 6 shows
an example of CHAISE screen-shots for creating multiple
experiments simultaneously.
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Fig. 6. Use of RecordEdit application to create GPCR experiments.

Asset acquisition. 10box disk-monitoring agents are de-
ployed at each site, for acquiring file-based experimental data
such as flow cytometry (.FCS), chromatography (.CDF),
gel images (.JPG), and stability (.CSV) data. The agents
are configured with general ingest logic which examines file
extension for asset type, and filename and directory patterns
for additional metadata associated with the assets. Files are
automatically added to the HATRAC object store, and metadata
are added to the corresponding asset tables and cross-linked
with other entities in ERMREST based on detected properties.
For example, jsmith/20161013EXP1. jpg implies that
the file is a gel image uploaded by ’jsmith’ and it is linked
to the experiment with ID *20161013EXP1’. Assets with un-
known experimental context get uploaded with no experiment
linkage and can be later cataloged using CHAISE. For ad hoc
assets such as publications or construct related documents,
users can upload files along with their metadata using CHAISE.

Condition-action processing. Raw assay data loaded into the
system must be processed to make it useful to the scientist.
Processing agents are triggered based on the existence or state
of entities in the ERMREST catalog. Data are extracted from
the catalog and object store using standard APIs and the results
of the processing pipelines re-ingested into ERMREST and
HATRAC as appropriate. Figure 7 depicts the main processing
pipelines that are triggered on each type of asset. The flow
cytometry (FCS) processing pipeline (Figure 7(c)) is illustra-
tive of the process. As generated by the instrument, a FCS file
contains results from many samples. The triggering condition
is that the corresponding FCS source is “incomplete.” The
processing pipeline expands the file into constituent single-
sample FCS files, each of which is further processed and
summarized, and the resulting new assets and associated enti-
ties are ingested into ERMREST and HATRAC (Figure 7(d)).
The bulk action can restart multiple times, recognize already
completed FCS file products, and continue working until
completion.

Dashboards. The GPCR system consists of diverse data
types, different ingest methods, and complex processing work-
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Fig. 7. GPCR condition-action processing pipelines. Observable data states
are depicted as labeled conditions, while processing actions are implied as
arrows transitioning from one state to the next: A) a new construct is aligned
using a third-party service, GPCRDB [16]; B) an aggregate alignment is
maintained for each target, tracking its most recent construct alignments; C)
a multi-sample FCS source file is processed in bulk, generating idempotent
checkpoints for D) a single-sample FCS file.

flows. To help different groups of stakeholders get a quick
summary of the system, we have developed the following four
dashboards. 1) Target dashboard summarizing individual tar-
get mean expressions and characterization based on its corre-
sponding biomasses. Consortium members can easily identify
active targets from this list. 2) Site dashboard summarizing
the number of assets across asset types generated by different
academic sites. This dashboard helps the PIs monitor the
progress of each site. 3) Data submission dashboard summa-
rizing the number of experiments, samples, and different assets
created by individual users, as well as the number of orphaned
assets that are yet to be cross-linked with an experiment or
sample. This dashboard helps the PIs, lab managers and lab
members get a quick summary of recent experiment activities.
4) Processing dashboard summarizing the real-time status
of all condition-action processing pipelines in different time
intervals (e.g. last 24 hours, last 7 days). System operators use
this dashboard to detect processing problems and take prompt
interventions.

Data exploration. CHAISE is the main user interface for
exploring consortium data. We use a number of CHAISE-
supported “annotations” on the ER model to customize data
presentation, such as embedding interactive visualization el-
ements (e.g. FCS, CDF, and CPM plots) or thumbnail im-
ages. An overview of the different presentations generated by
CHAISE is shown in Figure 8.

Access control policy. GPCR data are subject to differenti-
ated access controls, enforced by HATRAC and ERMREST to
provide consistent policy enforcement for web browsers and
any other networked clients. The academic members are able
to access all data. Each site member can create experiment-
related entries, but are only allowed to modify or delete entries
associated within their site. Consortium members are allowed
to access data associated with the consortium target list.

4) Results: The GPCR project (data.gpcrconsortium.org)
has been in operation for 2 years. There are 122 users,
928 targets including non-GPCRs, 24,934 constructs, 87,422
expressions, and 97,739 FCS assets in the system. The experi-
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Fig. 8. Dynamically generated display of GPCR Target including metadata,
activity tracking graph, and alignment.

ment design process was deployed in March 2017. Since then
there are 100 experiments, 375 samples, and 600 raw assets
uploaded. We plan to expand the experiment data model
tier to support the crystallization process and its assets in the
future.

Prior to our involvement, industrial members had little
insight on target status and had to wait for monthly updates.
Now they can track progress in near real-time. Experimental
results that were previously locked in scientists’ personal
notebooks are now available across the consortium. Integrated
acquisition, processing, and system state presentation GUIs
have reduced the effort for users, increased visibility into
workflow status, helped increase data quality, and freed up
time for actual science. Finally, we are now in a position to
start performing meta-analysis on experiments with the goal
of helping guide experiment design.

The interaction between the technology platform and the
daily practice of the data creators has been a critical element
of GPCR. We rolled out an initial version of the experiment
design model in December 2016. However, users were re-
luctant to enter data as it imposed additional step in their
workflow. Upon further investigation, we found that scientists
already entered needed information into other systems as part
of their experiment workflow: biomass requests and setting
up multi-sample chromatography assays. By slightly adjusting
the investigators workflow, all the experiment-related metadata
can be entered in the new GPCR system, and later exported by
CHAISE to use the data in downstream activities. The result
was that we reduced the number of steps the investigator
has to perform and increased data and metadata quality by
eliminating manual double entry.

VI. LESSONS LEARNED

Based on our experiences, a set of issues emerged across
deployments. We summarize the issues and solutions here.

A. Spreadsheets Are Poor Data Entry Tools

At the early stage of many of our deployments, new meta-
data were imported into DERIVA via spreadsheets based on
predetermined templates that referenced controlled vocabulary
in some cases. Spreadsheets are commonly used by domain
scientists, and we expected that this would be a streamlined
path towards data ingest. In practice, however, we found
the use of spreadsheets to be idiosyncratic and subject to
frequent human error. And, when we updated the data model
or simply added new terms to the vocabulary, we had to
redistribute the template to all data submitters which was
prone to communication failures. Moreover, entity linkages
rely on users supplying the right (foreign key) references and
in general we found many users are not comfortable with
creating proper references in multi-tab spreadsheets such as
Microsoft Excel and will just type in the values directly or
copy-and-paste whole rows. Based on this experience, we
placed an increased focus on on-line tools for metadata entry
that introspect the catalog schema, dynamically adapt to the
evolving data models, and apply data integrity checking upon
submission.

B. Detect Errors While You Have the User’s Attention

For asset submission, we initially created an upload agent
that monitored shared directories, automatically harvesting
metadata and ingesting that metadata along with the asset.
We had good success with this approach in earlier deploy-
ments in which we were able to include sufficient metadata
as part of the asset to ensure accurate placement into the
data model, e.g. our CIRM use case used bar codes on
microscope slides to indicate what experiment the resulting
data belonged to. However, in use cases, such as GPCR we
have less control over the content of an asset and are forced
to rely on file naming protocols to cross-link the asset with
existing metadata. Furthermore, in many bioscience use cases,
data generating instruments are shared and users tend not
to log in to their own account prior to acquiring data. This
resulted in additional complexity to associate data with specific
users when adding assets. In these cases, our agent based
approach broke down, as the agent service running in the
background reports errors asynchronously, after the user has
turned their attention to something else. A minor violation of
required naming conventions could delay data collection for
an unnecessarily long period of time. Therefore, immediate
feedback is required. These observations led us to structure
our on-line tools to perform error checking synchronously
when the user indicates the desire to ingest an asset, while
executing transfers of assets asynchronously once the platform
has determined that the contextualization of all the assets are
correct.



C. Give Users Incentives to Change Their Ways

Most of our experiences to date have involved deployments
of DERIVA into an environment in which there was already
an existing data management practice. While it is hard to find
a user who disagrees with the concept of producing sharable
and reusable data, and while there was broad agreement that
current data management practices in our use cases were
inadequate, it is also not surprising to observe that users were
reluctant to change their daily practice.

Fortunately in many of our use cases, we were able to get
users to alter their current practice by providing time savings
in somewhat unexpected areas, hence incentivizing use. For
example, in GPCR, we were able to use experiment design
metadata and our data extraction routines to automatically
generate configuration files for an instrument, eliminating a
double manual data entry task that the researcher would have
otherwise had to perform. Providing data and images as part of
a paper preparation process has also been a strong motivator.
In an image based use case, the ability to easily find and
download JPEG images for publication was motivation enough
to get users to adopt DERIVA. By identifying and exploiting
these small wins for a user, we can increase the uptake of our
data management tools, which will in turn result in increased
efficiencies that may be less directly observable to the domain
scientist.

D. Users Want a Bird’s Eye View of Their Data

The domain models enabled by DERIVA make it easier for
users to find and access specific sets of data. However, we
quickly learned that aggregate information about their assets
were highly desired by users. Invariably, soon after users could
see and explore their assets with DERIVA, they would request
various dashboards, summaries and roll ups. For example,
program managers, lab managers, and principal investigators
(PIs) often want to monitor the data submission progress.

In practice we see requirements for many different types of
dashboards including counts of assets and entities, assets in a
current state, roll ups over periods of time, etc. Fortunately, it is
easy to create these dashboards in DERIVA as database views
over the underlying data model, which can be queried and
displayed like any other normal model element. Support for
creating views with web APIs in ERMREST is currently lim-
ited, and given the importance of dashboards and summaries,
this is an area where the platform will be expanded.

E. Control Vocabulary But Not Too Much

We have experimented with different approaches to man-
aging vocabulary. Initially, in CIRM our users wanted uncon-
trolled term lists to label specimens and experiments. This
was soon plagued by numerous divergent terms and spelling
errors. Fortunately, DERIVA is extremely adept at helping
users correct such issues. They eventually adopted a controlled
terminology list that undergoes periodic review. Because they
are a smaller more homogeneous group, their term list changes
slowly and this approach works for them.

On the other hand, in GPCR and FaceBase we began
with strictly controlled vocabulary. However, this presented
a roadblock for users. In GPCR, users stopped entering data
when they could not find a desired term for an annotation. In
FaceBase, users entered their terms in non-standard locations
of the metadata spreadsheet or added them to comments.
This caused temporary data loss and lower quality of data
annotations. We remedied these issues by taking a pragmatic
approach to controlling the vocabulary. The data model still
enforces the use of vocabulary terms but allows users to add
new terms when appropriate.

DERIVA aims to make it easier to reuse terms than to add
new ones, yet at the same time is flexible to allow new terms.
For example, investigators with appropriate access control can
define new experiment types on the fly by adding elements
to term tables which can then be used by other investigators.
Other investigators see the complete list of possible experiment
types before being given the option to add a new type.

F. Human Factors are Critical to Success

Human factors were a major driver in designing DERIVA.
We view this broadly from the perspective of how the technical
components of DERIVA interface into the daily workflow of
the users, and the social structure in which research takes
place. For example, an initial assumption was that users would
be able to explore the data model rapidly by observing what
links were available, and internalizing the model as they used
the system. Unfortunately, this is not typically the case. While
a computer scientist may think in terms of links and graph
models for representing data, researchers in other eScience
domains do not necessarily think this way. Fortunately, we
have found that this barrier can be easily overcome by making
users aware that there is an underlying model and providing
a simple roadmap to the major model elements.

One important human factors metric is the number of
manual steps required to complete common operations. For
example, in biomedical investigations, experiments often con-
sist of multiple samples that are prepared all at once (many
instruments can handle 96 or more simultaneous data acqui-
sitions). To help these users, we extended CHAISE to support
multi-record input mode, where the user can add multiple data-
entry records to the same graphical form. Users also requested
shortcuts to produce multiple records with only a few varying
fields. As a result, we also added a mechanism to copy initial
content from an existing or draft record into the newly created
data-entry fields.

VII. RELATED WORK

Digital repository systems, such as DSpace [17] and Globus
Publish [18], provide object and data collection level metadata,
similar to DERIVA. Digital repositories are primarily con-
cerned with publication, as opposed to the discovery process
itself where one’s understanding of the domain model may
evolve considerably and hence these systems have very simple
metadata models (e.g. without relationships) and don’t support
model evolution nor support easy creation of multiple catalogs.



Other research has explored topics of integrated metadata
catalogs with key-value models [19]; distributed metadata
catalogs with key-value models [20]; and distributed relational
database access underpinning metadata catalogs [21]. How-
ever, these catalogs support a flat, per-asset description of
data, and don’t support the structured models that ERMrest
does, nor do they provide RESTful interfaces. Research on
metadata catalogs has considered issues of flexible model-
ing [22], dynamic model generation and integration [23],
and incorporating semantic representations [24] into metadata
catalogs. We differ from this work in focusing on ER modeling
as being more understandable by end users and integrating ER
models into a RESTful web services architecture.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have considered three questions: 1) can
scientific asset management systems provide value to eScience
investigations, 2) will users adjust their daily practices to use
these systems, and 3) are there reusable platforms that can be
readily adapted to diverse eScience applications. We answered
these questions through a detailed description of two represen-
tative use cases: FaceBase and GPCR. We were also able to
show that by focusing on human factors issues including user
interface and daily workflows, we can provide tangible value to
domain scientists (i.e. non-computer scientists) which results
in them adapting their data creation and analysis activities to
use these tools, as indicated by the quantifiable uptake in data
curation and usage.

These use cases represent just two of the many real-world
deployments of DERIVA. Similar results were seen in our other
deployments, further demonstrating that the asset management
approach can improve the efficiency of the research process,
and the quality of data produced by and used in experiments.
In this paper we focused on biomedical applications, as they
are complex and the users tend to be less computationally
sophisticated. However, DERIVA can be readily applied more
broadly with, we believe, the same positive results.

Based on our experiences to date, we have identified a
number of area for future work including providing web-based
management of named views; streamlining external ontology
integration processes; utilizing term relationships (e.g. part of)
for more semantic search; and simplifying IObox software
installation and update processes.

All DERIVA tools (deriva.isrd.isi.edu) are open-source and
are publicly available on github.
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