ERMREST: A web service for collaborative data management

Karl Czajkowski

USC Information Sciences Institute

karlcz@isi.edu
Robert E. Schuler

USC Information Sciences Institute
schuler@isi.edu

ABSTRACT

The foundation of data oriented scientific collaboration is the abil-
ity for participants to find, access and reuse data created during
the course of an investigation, what has been referred to as the
FAIR principles. In this paper, we describe ERMREST, a collaborative
data management service that promotes data oriented collabora-
tion by enabling FAIR data management throughout the data life
cycle. ERMREST is a RESTful web service that promotes discovery
and reuse by organizing diverse data assets into a dynamic entity
relationship model. We present details on the design and implemen-
tation of ERMREST, data on its performance and its use by a range
of collaborations to accelerate and enhance their scientific output.

CCS CONCEPTS

+ Information systems — Entity relationship models; Data-
base web servers; RESTful web services; Digital libraries and
archives;

KEYWORDS

Metadata, data management, asset management

ACM Reference Format:

Karl Czajkowski, Carl Kesselman, Robert E. Schuler, and Hongsuda Tangmu-
narunkit. 2018. ERMREST: A web service for collaborative data management.
In Proceedings of International Conference on Scientific and Statistical Data-
base Management (SSDBM’18). ACM, New York, NY, USA, Article 4, 12 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION

Increasingly, scientific collaboration is driven by an iterative process
of collecting, analyzing, and disseminating large and complex data
sets. Data may originate from diverse instruments, such as DNA
sequencers or microscopes, external databases or as the result of
computational simulations or analyses. Data are assembled into
collections, subject to analyses or refinement, the results recorded,
and shared with collaborators within a laboratory, consortium,
or a global-scale research community. The process repeats itself,
evolving and adapting as new avenues are pursued, new types of
data are created, and new measurement or analytic results obtained.

Data intensive scientific discovery can be accelerated and col-
laboration enhanced when the data associated with the discovery
are Findable, Accessible, Interoperable, and Reusable [14]—the so

SSDBM’18, July 2018, Italy
2018. ACM ISBN 123-4567-24-567/08/06...$15.00
https://doi.org/10.475/123_4

Carl Kesselman
USC Information Sciences Institute
carl@isi.edu

Hongsuda Tangmunarunkit
USC Information Sciences Institute
hongsuda@isi.edu

called FAIR principals. FAIR data is F1) findable when it is identi-
fied by a unique identifier and characterized by rich metadata that
describe the details of the data and its relation to other data, F2) ac-
cessible via standard protocol with access control and its metadata
can be accessed even if the data cannot, F3) interoperable by using
standardized terms to describe it, and F4) reusable by providing
accurate and relevant attributes.

FAIR principals are often thought of in the context of sharing
final published data. However, there is no reason to assume that
the benefits of FAIR data apply only to sharing and reuse of pub-
lished data. Creating FAIR data as part of the daily process of a
scientific investigation has the potential to enhance a data driven
collaboration by streamlining the exchange and reuse of data across
a research team, reducing the potential for error by maintaining
accurate data context, enhancing provenance for reproducibility
and improving the quality of data that are ultimately published.

In this paper, we propose an approach to integrate FAIR prin-
cipals to the entire data life cycle — from when data are being
generated and analyzed and as they are shared across scales from
a research group, a consortium or global community. Supporting
FAIRness as part of the data infrastructure used on a daily basis
by a research team has the potential to greatly improve adoption
and application of FAIR guidelines. With this goal in mind, we
have developed ERMREST, a RESTful web service for collaborative
data management that promotes continuous application of FAIR
guidelines into daily collaboration.

ERMREST promotes FAIR data production by: providing rich
metadata using an Entity-Relationship model to express relation-
ships between diverse data elements (F1); offering rich access con-
trol and access to metadata via standard HTTP web service inter-
faces (F2); integrating with standardized terms defined by collabo-
rators, consortium or communities (F3); and supporting dynamic
model evolution so that the data presented accurately represents the
current structure and state of knowledge within an investigation
(F4). ERMREST is part of the DERIVA scientific asset management
system and has been applied to diverse application domains [10].

The main contributions of this paper are to:

o identify the requirements for a collaborative data manage-
ment service that supports continuous FAIRness;

o present the design and implementation of the ERMREST ser-
vice that meets these requirements; and

o provide performance results that show ERMREST is practical
for daily use in a wide range of application domains.

In Section 2 we define the requirements for a FAIR data service. In
Section 3 we describe our approach to data modeling and describe

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

SSDBM’18, July 2018, Italy

ERMREST as a web service in Section 4. Application of policy is
covered in Section 5 and our approach to managing update history
is discussed in Section 6 and creation of identifiers in Section 7. In
Section 8 we present the ERMREST architecture and implementation.
Performance results are provided in Section 9. We conclude with
related work and conclusions.

2 REQUIREMENTS

We consider the characteristics of FAIR data within the context
of an ongoing data-driven collaboration in order to identify the
features a collaborative data management service should have. Our
goal is to define a data management service such that all of the
data produced by a collaboration are FAIR, supporting the full life
cycle of scientific data including early experiment design; early and
production data acquisition; ad hoc and repeated analyses; through
publication. We specifically wish to support the “long tail” of e-
Science [3], where many small collaborations may each involve
merely dozens of data-producing clients, dozens to hundreds of
data-consuming clients during the active phases of research, and an
unknown number of casual or single-use data-consuming clients
in later, passive phases of scientific libraries and archives.

Data ecosystem and separation of concerns. FAIR principals
specify that metadata has a lifetime that is independent from the un-
derlying data, in that metadata be accessible even if the data are not
(F2). In a scientific asset-management paradigm, this means that
services holding metadata should be capable of tracking bulk files
when they are used in research and continue tracking them even
if the files are eventually discarded. However, when rich metadata
catalogs are used to drive scientific work, their metadata content
should also be subject to this same principle. If the metadata content
is used to drive research decisions, that use should be recorded and
tracked so that these decisions can be understood retrospectively,
even if the metadata catalog content has in the meantime under-
gone changes due to ongoing collaboration and curation. Just as
object stores can hold multiple versions of a file and unambiguously
determine that a file or version is no longer available, rich metadata
catalogs should be able to hold multiple versions of metadata and
unambiguously determine when metadata is no longer available.

Pervasive naming. FAIR dictates that all data be identified by a
unique and stable identifier (F1). Web services inherently generate
URLSs as identifiers, but uniqueness and stability depend on the de-
sign of each service. Most web services for storing objects provide
unique URLs for each immutable version of a stored file. However,
object stores may not track already-deleted files and entire services
may come and go in a long-lived project setting. In contemporary
distributed systems, an additional layer of resolver services are
often introduced to provide persistent identifiers which can be used
to track and resolve the current URL for known resources or un-
ambiguously return a “tombstone” record for previously-known
resources which are no longer accessible. These same requirements
and goals can be applied to dynamic query results, as described
in [9], and we argue that this also applies to rich metadata catalog
queries. Thus, we need mechanisms to version and timestamp all
data including query results, provide a unique identifier for these
data, and to generate corresponding citations. Most of these re-
quirements can be met by ensuring that stable identifiers are issued

K. Czajkowski et al.

as part of each record, tracking versions of records, assigning a
version-based naming scheme to record retrieval and other query
results, and supporting a form of historical access such that those
earlier query results can be retrieved again by name, even if the
latest metadata catalog content has been changed.

Model-driven organization and discovery of assets. FAIR
principles require detailed descriptions of data, leveraging stan-
dardized vocabulary terms (F1, F3). Information captured in meta-
data provides significant scientific context to underlying assets,
e.g. recording information about events, protocols, and materials.
Detailed metadata in FAIR data requires that the metadata models
directly represent the concepts and relationships in the problem
domain being worked in. Data and metadata may be sourced from
existing data collections, outputs of computations, specialized in-
struments and lab information management systems, or sources
like spreadsheets, text files, and manual data entry. Data assets
can share generic metadata concepts such as file name, URL, size,
checksums, or file type. Ultimately, basic file metadata is far from
sufficient to find and ultimately use or reuse data from scientific
experiments. Depending on the level of formality in projects, dif-
ferent kinds of provenance and quality-control metadata may also
be useful.

In practice, the details in metadata will vary greatly from collabo-
ration to collaboration. The types of data tracked, contextual details,
and relationships between data will all evolve as a collaboration
proceeds. Early-phase, exploratory projects need quick setup and
simple models while researchers establish experiment protocols,
collaboration methods, shared terminology, and data collection
standards. Over time, the understanding or conceptualization of
science tasks may mature and along with it the representation of
activities and results must also evolve. Hence, if a data management
service is to be used for the life time of a data-driven investigation,
the metadata model that it captures must be capable of evolving
over time while providing suitable access methods (F4).

Rights management and access control. FAIRness does not
imply public access to all data, particularly as we extend these
principles to earlier phases of scientific research. Membership in
research collaborations will change over time, while the roles and
associated rights of the members will also vary. For example, a
post-doc in a group may be allowed to create new data elements to
share with her lab, but only the PI is allowed to approve the release
of the data to other members of a research consortium. In addition,
scientific data sharing may involve data use agreements, access to
proprietary data, time driven data embargoes, and different user
roles within and across collaborations. Support for access control
and associated policy may be required at levels of granularity that
go from an entire data set, to a single data element to provide access
(F2). These different policies must be applicable in a fine-grained
way, so that multiple classes of assets and metadata can be managed
in one project and given different access policies.

3 ENTITY RELATIONSHIP MODEL

The organization of metadata benefits from well-defined concepts
and structure to represent (or model) real-world information about
assets. For example, a researcher may wish to find all pairs of se-
quence reads for each replicate in RNA experiments where the

ERMREST: A web service for collaborative data management

biosamples had a specific genotype and mutation. In addition, they
need enough detail to process data in a pipeline such as the read
direction, strandedness, and the species of biosamples. This requires
structured information about the files (direction, read number), the
experiments (molecule type, strandedness, etc.), replicates (biologi-
cal or technical replicate number), and biosamples (species).

While it is possible one could “flatten” these details into key-
value pairs or other types of standardized structure, such a limited
meta-model offers little expressive power in which to define and
query metadata; and may lead to many data quality issues due to
lack of database “normalization” (delete/update anomaly, redun-
dancy, inconsistency, etc.). Instead, ERMREST adopts the Entity
Relationship Model (ERM) as its core meta-model for allowing
researchers to structure their metadata catalogs.

ERM as Tabular Meta-Model. Scientists need conceptually
simple data structures balanced with the ability to evolve them to
represent rich domains. Most researchers are familiar with tabular
data in spreadsheets and research papers. In our experience, they
readily adjust to tabular data-entry forms and table-oriented query
results, where the tabular characteristics are enforced more rigidly
than in spreadsheets or typographic tables.

The introduction of a tabular data store governed by an ERM
can help structure interactions between collaborators, improving
reusability of data and also providing a tangible nomenclature for
discussion between collaborators about data collection techniques
and data quality requirements. Furthermore, it enables model-driven
software tools which consume an ERM description and automati-
cally present a customized interface. These tools consume an ERM
and adapt reusable table presentation techniques rather than hav-
ing any ERM-specific structure designed into them. Such adaptive
software enables a fluid collaboration style where data models can
evolve throughout the life cycle of a research project.

Flexible Data Modeling. Our approach allows each collabo-
ration to customize and evolve their own ERM enabling them to
create detailed and meaningful metadata that is relevant to the
needs of the collaboration, promoting reusability (F4). ERMs are
collected into a collaboration-specific catalog which includes the
current ERM schema, all current metadata values along with update
history (discussed in Section 6 and policy (discussed in Sections 5).

To help with the construction and operation of model-driven
software, we augment our ERM with annotations via convenient
key-value stores associated with each node in an ERM. These allow
software designers and data modelers to collaborate and experiment
on more advanced presentation features by annotating parts of
the ERM with machine-readable hints about semantics or desired
presentation style. This enables us to “tweak” presentation and
improve user experiences while preserving more rational ERM
choices, e.g. keeping normalized entity and relationship data in
ERMREST presenting denormalized content on screen.

ERM and Vocabulary. To promote findability (F1) and interop-
erability (F3) an ERM can easily be crafted to facilitate annotation
of entities and data elements using standardized vocabularies (i.e.,
ontologies). The ERM naturally models vocabulary terms (as enti-
ties) and their relationships (e.g., is-a, part-of, etc.) either via direct
references or through “relationship sets,” which may be modeled
as tables to define relationships with additional properties or more
complex cardinalities.

SSDBM’18, July 2018, Italy

ERMREST System Columns. To simplify certain aspects of
ERMREST software development and to introduce scientific data-
management practices which are not always obvious to users cre-
ating new ERMs, we have defined a small set of ERMREST system
columns which we require in every table definition in our systems:

e RID or “row ID” is an opaque and stable identifier unique to
each entity;

e RCT or “row creation time” records the birth-moment of each
entity;

e RMT or “row modification time” records the moment when
each entity was most recently revised;

e RCB or “row created by” records the authenticated identity
of the client who added an entity;

e RMB or “row modified by” records the authenticated identity
of the client who most recently revised each entity.

Our service automatically manages the content of these special
system columns so that they represent system-managed provenance
and do not vary depending on the choices of other clients.

4 ERMREST AS A WEB SERVICE

To promote accessibility (F2), ERMREST is a RESTful web service
using secure HTTP as the protocol layer. We represent content
and configuration as a set of web resources, each named by a URL,
and define all client access in terms of simple hypertext transfer
protocol (HTTP) requests performed against these resources.

We organize the web resources hierarchically into catalogs and
catalog snapshots, each with its own ERM, security policies, and
stored content. Requests from web browsers and other clients can
manipulate these resources to learn the catalog configuration, re-
configure it, add content, remove content, or query content.

Catalog resources. Catalogs are the mutable data stores of the
service. New catalogs can be created, a brief catalog description
retrieved, or an entire catalog deleted. The catalog URL is a prefix
for the URL of each of the other catalog-specific resources.

Snapshot resources. Snapshots are siblings to mutable catalogs.
Rather than representing a data store, each snapshot represents
content as it was known at a moment in the past. Each snapshot
resource hierarchy mirrors its parent catalog resource hierarchy
at the time the snapshot is created. Because snapshot resources
represent content rather than storage, they only support retrieval
operations.

History resources. Each mutable catalog has history manage-
ment resources, allowing an administrative client to amend the
historical record and alter the set of available snapshots en masse.

ERM resources. The ERM resources of a catalog represent the
model which governs its storage. Model descriptions can be re-
trieved, and the model revised at will by creating or deleting in-
dividually named nodes in the ERM hierarchy: schemas, tables,
columns, and key or foreign key constraints.

Policy resources. Access-control policies are managed relative
to nodes of the ERM, allowing the administrator to express general
policies affecting an entire catalog as well as more specific policies
affecting only individual schema, tables, or columns. The policy
system is described in more detail in Section 5.

SSDBM’18, July 2018, Italy

Rights resources. Rights summaries are tri-state! predictions
of future access-control decisions. These summaries augment indi-
vidual ERM nodes and allow clients to anticipate likely outcomes
for requests involving each ERM concept, without exposing clients
to policy definitions nor a difficult interpretive task. A model-aware
client such as our companion graphical user interface can use these
predictions to tailor the options presented to each user.

Data resources. Tabular data representations are exchanged to
retrieve or update relational data content of the catalog. ERMREST
splits the data resource space into several interpretations of the
relational storage: entity (whole row) access; projected (partial row)
access; computed aggregates, e.g. counts or min/max; and grouped
projections, i.e. access to combinations of group keys and their
associated values or aggregates.

Each of these data APIs exposes a rich hierarchy of sub-resources
denoting a range of query idioms including: simple access to one
table; relational joins of multiple tables; filter-based row selection;
column-based projection; configurable sort order; and pagination.
A small subset of these resources support insertion, update, or
deletion of data in one table at a time.

5 FINE-GRAINED POLICY

We allow fine-grained policies to adapt each catalog to the needs of
its community. Each policy grants a privilege, allowing a specific
actor or role to use an access mode in order to operate on one or
more resources. By “fine-grained,” we mean that granted privileges
can be scoped broadly (e.g. entity set) or narrowly (e.g. attribute)
according to the goals of the administrator and collaboration.
These access decisions cover a range of use cases including:

e Hide certain columns from “less privileged” users;

e Row-ownership, e.g. client matches RCB;

o Curation status, e.g. row is marked with coded values indi-
cating that the row has been approved for release;

o User-managed ACLs, where rows extend access to explicitly
listed users, and users are given the right to further adjust
the embedded ACL to re-share.

We use access control lists (ACLs) to associate policies with
specific user or group identifiers. Commonly, groups are used to
define a role subject to a set of related policies. Then, users can
be added and removed from these groups as their role in a project
changes, avoiding frequent changes to policy definitions.

Policies are attached to ERM nodes in order to define their scope,
e.g. apolicy can affect a whole catalog, a specific schemata, a specific
table, or one column of a table. Policies are inherited as default by
descendants in the ERM, but each node can override with a custom
policy which changes the default for its descendants.

ERMREST supports two types of policies: static and dynamic.
Static policies grant rights to clients matching an ACL associated
with the ERM. Static policies grant access to ERM nodes (for intro-
spection and ERM management) and also grant access to associated
storage (for data access). Dynamic policies address a common use
case in which policy based on the state of the metadata. For example

Binary access control decisions of allow/deny are represented as boolean values
true/false. A third access control prediction of “unknown” is represented as the
null value, meaning that a specific request must be attempted in order to determine
data-dependent decisions.

K. Czajkowski et al.

apolicy that says that a dataset can be released only after it has been
reviewed by a project P, as indicated by the value of an approved
metadata attribute on a data set. Dynamic policies include data
pattern tests which must be met during request processing before
any data-access right is granted.

5.1 Access Modes

We use access modes to define the kinds of access granted by a
specific policy. The modes for static policies are summarized in
Table 1, and dynamic access modes are summarized in Table 2.
Dynamic mode names overlap with static modes and slightly adjust
their meaning. The static enumerate mode controls the visibility of
an ERM node for introspection and any other model-driven actions.
The static owner mode includes administrative privileges needed to
manage a catalog or ERM. A dynamic policy can only grant rights
to data storage resources, never affecting ERM access.

Many modes are specific to certain kinds of resource. However,
access modes can also be configured on parent resources to employ
inheritance, e.g. select on a catalog or schemata sets a default
policy for tables contained therein, and may have no effect at all if
every table has a customized policy. Furthermore, some access meth-
ods imply other lesser privileges, e.g. select and create imply
enumerate; update and delete imply select; and owner implies
all privileges.

Table 1: Static access modes and resource scopes.

Mode Resource | Granted access permission
enumerate | catalog Observe catalog.
schemata | Observe schemata.
table Observe table.
column Observe column.
select table Query and retrieve rows.
column Query and retrieve cells.
insert table Create rows.
column Initialize in new rows.
update table Mutate existing rows.
column Mutate in existing rows.
delete table Remove existing rows.
create catalog Add schemas to catalog.
schemata | Add tables to schema.
owner catalog Admin. access.
schemata | Admin. access to sub-tree.
table Admin. access to sub-tree.

5.2 Dynamic Policy Details

Each dynamic policy has a scoping ACL to determine relevance in
a given request, but also has additional content describing how a
data-dependent check should be performed. For each stored row
that is being processed, a dynamic policy describes a method to
project some content out of the database and finally grant access
only if a special access test is satisfied by this contextual content.
A policy architect can create a modular policy which defers
certain details to data-dependent tests. Then, less privileged users
can be given limited access to manage the data values which control

ERMREST: A web service for collaborative data management

Table 2: Dynamic access modes and resource scopes.

Mode Resource | Granted access permission
select table Observe row.

column Observe value.
insert for. key Reference during insertion.
update table Mutate row.

column Mutate field.

for. key Reference during update.
delete table Remove row.

column Reset field to default.
owner table select, update, delete.

column select, update.

these tests, reusing existing data access interfaces for user-initiated
changes to the policy enforcement system. Of course, these policy-
influencing data changes are also subject to additional policy checks
to prevent abuse. This lets the users have limited control over how
resources are shared, without giving them wholesale access to
scorrupt or bypass important access rules. This is similar in spirit
to defining role-based policies in terms of a group, and delegating
group administration to users at large. Those deputized users can
add or remove group members but they cannot arbitrarily change
other policies affecting themselves or others.

Projected context. Every dynamic policy describes how to
project contextual content from the database as part of policy en-
forcement. Ultimately, the source of projected context is always
a named column in the database. The simplest context is a col-
umn within the same row for which access is being determined.
Chained projections introduce joined tables based on foreign key
relationships to the table being controlled. In this case, a multi-table
pattern of linked row instances is located, and the final projected
context can be drawn from any one of these linked rows. Filtered
projections introduce additional column-operator-value predicates,
masking the context value if these value tests do not hold. The filters
are useful for making a row-level decision conditional on a coded
value, e.g. only consider this context when the row is “curated.

Decision types. ERMREST supports two decision types when
processing contextual content. An acl decision interprets the pro-
jected content as another row-specific ACL which should be matched
against the requesting client, just as we match static ACLs found in
policy definitions. These dynamic acl decisions are useful when re-
stricting access based on row-level provenance or by user-controlled
permission lists. For contextual content which does not represent
client or role identifiers, a non-null decision type is also available
and simply tests that a context value has been found.

The simplistic non-null decision type is usually used in combi-
nation with filtered projections. When the actual access decision
can be expressed in the form of a static ERMREST query, that query
is written into the projection rule so that it returns context only
when access is desired and returns NULL otherwise. However, fil-
tered projections can also be combined with acl decisions when
you want to conditionally enable or disable consideration of ACLs
embedded in row content as a basis for workflow state restrictions.

Foreign key policies. Policies on foreign keys, as indicated in
Table 2, enable scenarios where coded values are enshrined in a

SSDBM’18, July 2018, Italy

community and used in data-dependent policies. Rather than giving
users all-or-nothing access to modify a field containing such coded
values, the policy architect can control which users are able to
express which coded values. These policies are scoped to a foreign
key rather than the vocabulary table, allowing the policy architect
to restrict the use of the same terms distinctly at each point of use
in the ERM.

Dynamic selection. When dynamic policies grant the select
privilege on all relevant rows and columns, request processing pro-
ceeds with the same behavior as if static policies granted access
(except for performance penalties from enforcing the dynamic pol-
icy). However, when dynamic policies fail to grant select privilege
on a row, that row is excluded from query processing and the re-
quest behaves as if the row does not exist. The client effectively
observes the subset of table rows which they are permitted to see.
When a dynamic policy fails to grant select privilege on a column,
the SQL NULL value is substituted for whatever value is actually
present. The client effectively observes a masked version of the
enclosing row. In contrast, dynamic authorization failures on data
mutation requests will cause the entire request to fail.

6 HISTORY

To support FAIRness of metadata, we track mutation results in
each catalog and express them as catalog snapshots. Our objective
is to automatically and coherently capture catalog snapshots and
support stable reference to query results.

However, our experience tells us that data stewards and sys-
tem administrators will need pragmatic options to control costs,
mitigate risks, and prevent abuse. We introduce history amend-
ment features to allow for these eventualities: to revise mistakes
in policy configuration, to expunge old history when enforcing
data-retention policies, and to redact specific values which were
mistakenly stored in a catalog. Without these features, we know
that administrators will face all-or-nothing decisions to close down
or destroy valuable catalogs where they cannot afford the cost or
risk of keeping snapshots.

We also find it worth discussing one significant non-goal for
ERMREST history interfaces. We are not building a generalized
temporal database nor focusing on temporal knowledge models.
Snapshots are meant to represent drafts or revisions of the evolving
catalog content, much as in a version-control system for source
code or documents. If a project needs to track time-series data or
model the time at which facts are known, those concepts should be
reflected in the asset or ERM structures they use.?

6.1 Catalogs and Catalog Snapshots

We distinguish a mutable catalog and each of its many catalog
snapshots. In effect, every modification to the mutable store creates
a new catalog snapshot. At any given moment in time, the mutable
catalog contains the same content as the most recently created
snapshot.

In essence, each catalog snapshot represents the set of row ver-
sions existing at the snapshot time. We can consider the entire

2 Put succinctly: The revision-history of a book is quite distinct from the history related
by the book.

SSDBM’18, July 2018, Italy

history of a catalog as a linear sequence of snapshots, each corre-
sponding to one distinct moment in time when row versions were
created and/or rows deleted. If we introduce an identifier for each
of these possible snapshot moments, we can include that within
query URLs in order to name different queries expressed against
the same snapshot or conversely the same logical query expressed
against different snapshots.

Because we support evolution of models, we account for dif-
ferences in the ERM between each snapshot and the live catalog.
Furthermore, because policy is scoped to ERM nodes, we cannot
assume that the latest catalog policy can be applied to an older
snapshot which does not even possess the same ERM concepts.
Instead, snapshots will also hold a snapshot of the catalog policy
in place when they are created. Administrators will need to use
history management mechanisms to intervene if they have a need
to retroactively change the policy on previously held snapshots.

6.2 History Management

To address the need for system operators to control their history
storage, we define a set of interface functions that enable examina-
tion and manipulation of a history timeline by system administra-
tors. These include:

Range Discovery. Administrators need to be able to probe a
catalog to determine the range of snapshots currently stored.

Truncation. To reclaim space or observe limited data reten-
tion policies, administrators can instruct ERMREST to delete older
snapshots based on a data-retention horizon.3

Policy Amendment. To address retroactive changes to data-
access policy, administrators can address an ERM node within a
historical interval to modify their respective policies en masse to a
new, common configuration. This interface allows editing of static
or dynamic policy elements.

Data Redaction. To address redaction of stored values in his-
torical snapshots, administrators can address a table column within
a historical interval to delete its content. This revises stored row
version snapshots to replace the stored column value with a NULL
value. The administrator can apply this operation to all entities
within the historical interval, or optionally can include a simple
filter condition to selectively redact only row versions that hold
some other value. Two common idioms would be: redaction of all
row versions for a specific entity with a fixed RID value; or redac-
tion of all row versions containing a specific inappropriate value in
the column to be redacted, regardless of which entity it belongs to.

7 PERSISTENT IDENTIFIERS

Every entity item within an ERMREST catalog is automatically
assigned a globally unique persistent identifier when the RID is
assigned by the server. By combining the RID with the snapshot
ID for the catalog, we can uniquely identify an exact instance of
an entity. Given that the snapshot captures the state of the entire
catalog, we have identified not only a single entity, but all of the
other entities that might be connected to it via a relationship in the
ER model.

30f course, further administrative tasks may be needed to complete this objective
after ERMREST has deleted data under its control. System operators may need to also
purge database backups, audit logs, or copy-on-write storage systems used in their
deployment.

K. Czajkowski et al.

Snapshot IDs combined with RIDs and the web service interface
allows us to construct data retrieval URLs for entities and more
complex queries at a particular point in time. These URLs act much
like version-qualified object references to an object store, making
stable reference to a previously held value. However, the history
management mechanisms described in Section 6 and the other web
service mechanisms described below introduce additional complex-
ity. While conventional object stores will either serve older versions
or refuse as a binary decision, ERMREST is capable of serving an
amended version of referenced historical content.

8 INTERFACE AND IMPLEMENTATION

Like any web service, ERMREST supports well-defined communica-
tions regarding its resources, using HT TP request-response mes-
sages. To design the service interface, we must define the resource
types, their identifiers, their representations, and the behavior of
the HTTP methods used to manipulate them. Aside from the meth-
ods, e.g. GET or PUT, there are many standard HTTP headers which
can modify the meaning of a request or response.

We take a pragmatic stance in binding relational catalog con-
cepts to web concepts. At present, the ERMREST service interface’s
target audience is programmatic clients who understand ERMREST
rather than traditional web browsers which expect server-rendered
content suitable for human presentation. In order to support users
with web browsers, we have developed Chaise [10], a companion
suite of single-page web applications which present a graphical
user interface and translate user-level goals into combinations of
ERMREST requests and client-side presentation.*

Every web service and client must know that HTTP itself is
not reliable, since any request or response message may be lost or
incompletely transmitted. We support a number of standard HTTP
features which allow reliability to be synthesized over a stream of
requests. These features include well-defined status codes to signal
error classes, so-called ETag headers to name individual resource
states, conditional processing instructions to detect concurrent
change, and standard HT TP methods which define rules for safe
error-handling procedures.

HTTP methods. In general, we use the GET method to retrieve
representations of data, ERM, and policy resources in a side-effect
free manner; PUT for in-place mutation of data or policy resources;
DELETE for destruction of data, ERM, and policy resources; and POST
for creation of new sub-resources under a named parent resource.’

URLs name queries. We define a rich set of query resources
where the URL structurally encodes query terms. The URL identifies
the access API and table (or joined tables) being queried; imposes
data filters as attribute-operator-value filter predicates applied to
each row; establishes a sorting order for results; identifies a page
size or limit for the query response; and identifies a pagination
boundary if addressing a position other than the beginning of the
sorted result stream. For example, the following query identifies an
entity set in catalog 1 at snapshot Y-1Z4B from table bar joined
with foo with filter predicate on attribute x greater than 7.

4 A typical Chaise “page load” makes a sequence of ERM and data requests to build up
an intuitive, model-driven rendering of catalog content.

5Our use of PUT and POST for tabular data is a pragmatic compromise to simplify the
interface for clients. Ideally, these should use the PATCH method to be more compliant
with REST principles. We may revisit this design decision in the future.

ERMREST: A web service for collaborative data management

ermrest/catalog/1@Y-1Z4B/entity/foo/bar/x::gt::7

This query-based URL syntax supports access idioms for mu-
table storage including: stable identifiers, e.g. to locate a row by
its immutable RID; unstable attribute-based naming, e.g. locating
a row by an application-specific, mutable key; or pattern-based
naming, e.g. a set of rows sharing certain direct or linked attributes.
All of these URLs support retrieval via GET, most support deletion
of content via DELETE, and only a very reduced subset of URLs
support creation or mutation operations.

URLs name data. Given mutation, it is best to think of data
URLs as representing the result of a query process. The result has
a well-defined semantics but the precise content depends on the
current state of storage. When the storage state is fixed, one can
conflate a query process with the resultant data. In these cases, one
may think of a query URL as a name for data.

The catalog snapshot mechanism provides explicit URLs to fix
the state of storage and reference such named data over long peri-
ods of time. However, due to content-negotiation, access-control,
and history management, even snapshot data URLs may name dif-
ferent data depending on when and by whom a request is made.
Only in combination with end-to-end validation (such as externally-
imposed checksums) can an exact data value be shared by reference.

Differential content retrieval. The same URL can retrieve
different representations depending on the outcome of content
negotiation, e.g. JSON or CSV tabular data. This standard HTTP
mechanism, influenced by client choices, is called content negotia-
tion. In addition, operations on the same URL can retrieve different
data or cause different status codes depending on the client’s iden-
tity and configured access-control policies.

State tracking. An ETag names the instantaneous version of a
resource being accessed. In practice, we derive this from the most
recent change to any ERM, policy, or data resource involved in
the request. The ETag header is returned in retrieval responses to
identify the state being served and in mutation responses to identify
the new state created as a result of the operation.

A known ETag can be sent by the client with conditional pro-
cessing request headers to ask the server to process the request
only if the current resource state holds a certain relationship to
the version known by the client. The IfMatch header is used in
mutation requests to skip processing and signal an error if there
has been any concurrent change to the resource that the client is
not aware of. Conversely, the IfNoneMatch header is used in re-
trieval requests to skip processing if the resource has not changed,
instructing the client to continue using cached content.

Atomic requests. Each request provides atomic, consistent, iso-
lated, and durable updates or inspection of catalog state. Side-effects
of successful requests are visible to all subsequent requests by all
(authorized) clients. Concurrently submitted requests will be ser-
viced with an apparent serialized order.

Requests which produce a non-success status code leave the re-
source unchanged. However, a client may need to perform queries of
resource state or employ conditional processing headers to reestab-
lish a coherent understanding of catalog state if response messages
are lost. Most mutation operations are not idempotent, and blind
repetition following a lost success response may cause errors or
other undesired results.

SSDBM’18, July 2018, Italy

REST API § % E
- Data-independent Request Query =8 H
Authentication i e ale I
Authorization Validation Generator B
Data Access =
4 _at " w
. ol
Catalog Model (De]'se”a“za'!m History e g
Management | Management || _Query Execution || panagement || 5] &
Data-dependent o x
Authorization @ 3
o €
N w
Catalog | Madel Annotation Policy | % S
Registry | Live Data Provenance History | 3 &
o
Per catalog | |2

Figure 1: ERMREST system architecture.

Web service implementation. The current ERMREST software
implements the preceding web resources and HTTP binding princi-
ples as a Python-based web service which is tightly coupled to the
PostgreSQL database management system. We operate the service
as a web. py framework application running in mod_wsgi daemon
mode behind the Apache HTTPD web server, with HTTP/2 proto-
col enabled for efficient handling of many small requests from web
browsers.

Figure 1 depicts the overall ERMREST architecture. For perfor-
mance reasons, we delegate tabular data processing to the database.
The Python web service performs meta-model processing to val-
idate and plan requests, but any tabular data input or output is
simply relayed as byte streams.

Through a mixture of dynamically generated SQL, stored pro-
cedures, and triggers, the database engine performs the signifi-
cant work of processing data. It deserializes inputs, enforces data-
dependent access policies, produces side-effects denoted by data mu-
tation requests, enforces integrity constraints, tracks data changes
and provenance, computes data results, and serializes outputs.

Model-driven processing. ERMREST generates SQL statements
through a process that resembles a syntax-driven compiler, using
the ERM and policies to validate the request prior to generating
and executing commands on the database. Each request URL ref-
erences a number of ERM concepts, and the resulting syntax tree
defines the “shape” of the request processing that will proceed if
access is granted. This compiler-like meta-processing is what al-
lows ERMREST to adapt incrementally to ERM changes made by
clients during an active collaboration.

Model storage and evolution. The ERM is reified® so that ERM
nodes are each issued their own stable RID. Each table in the ac-
tive catalog ERM maps directly to a table in PostgreSQL with a
RID primary key, with a corresponding history table containing
historical copies of rows, each keyed by RID and a visibility interval
delineating their birth and death moments.

We reify the ERM and stored it in tables so that we can also
apply history tracking to the ERM. Unlike normal SQL “information
schema” which reify only the current model of a database, our ERM
storage tables are backed by history tables and allow us to determine
the previous state of the ERM at any point in the recorded history.
A history of policy definitions accompanies the ERM history.

®Reification here simply means that the ERM concepts are themselves modeled as data
within the same system.

SSDBM’18, July 2018, Italy

Policy storage. We treat policies for a catalog as part of the
ERM and store them alongside other meta-model content in the
database. Policy management is treated much like model manage-
ment, updating the authoritative representation in the database on
each policy change. All service request processing is designed to
provide a transactionally-consistent view of ERM, policy, and data.

Authentication. For each request, we establish a primary client
identity and any secondary attributes associated with the client,
according to the configured authentication system.

Most of our deployments use an OpenID Connect flow through
Globus, allowing users to sign-on via their home institution. In
this configuration, secondary attributes reflect the client’s group
memberships, determined by consulting the Globus Groups service.
The group mechanism allows a user community to self-manage
named sets of clients, and use these group names as roles in role-
based policies.

Authorization. To allow access, we must find a policy granting
access to the client. For data-independent policies, such tests are
performed by the Python service logic. For data-dependent policies,
tests occur first in Python to determine relevance of each policy,
and relevant tests are then compiled into the SQL executed in the
database to determine final access.

Logically speaking, ERMREST policies are a disjunctive set of
rules granting access privileges. If the service can find a data-
independent decision to grant access, it can perform a faster SQL
operation lacking any data-dependent enforcement. If there are no
relevant data-dependent policies, the service can skip SQL process-
ing entirely and reject access. Finally, if a static decision cannot be
determined, the service produces SQL with the disjunctive policy
checks encoded in such a way that the PostgreSQL query planner
can optimize its plan based on which data-dependent checks are
cheaper to execute.

History tracking. Historical row versions are automatically
stored using SQL triggers which intercept each row touched by
INSERT, UPDATE, and DELETE statements and update row version
data in a history table shadowing each live storage table. When a ta-
ble is deleted from the active catalog ERM, its shadow history table
remains. Catalog snapshots are logical resources formed by query-
ing these history tables selectively to only consider row versions
visible at a certain point in time.

To handle evolution of table definitions, we resort to a “blob”
storage method for historical row versions. Aside from the row ver-
sion key, all other content goes into a single rowdata column stored
using PostgreSQL’s jsonb column type. The fields in this data blob
are named by the RID of each column so they are unambiguous
even if column names are reused over time.

We also use SQL triggers to record requests which make any
change to mutable table content, ERM definitions, or policy. This
simplified audit log allows ERMREST to always know the entire
set of valid snapshot identifiers. This record of requests may also
support future enhancements to browse the history of changes
or retrieve details of each change for auditing or formulation of
“undo/redo” requests.

Longitudinal amendment. The longitudinal history amend-
ment interfaces directly manipulate history storage tables. History
truncation deletes every row version with a death moment earlier
than the truncation boundary. Amendment and redaction update

K. Czajkowski et al.

row versions in place to change policy or attribute content, respec-
tively.

History change tracking. We record history truncation, amend-
ment, and redaction requests in parallel with snapshot tracking. We
use this amended record to determine the latest revision time for
any given snapshot, so we can produce a new ETag and invalidate
any cached representation of a snapshot after an administrator
revises history. For history without any revisions, the revision time
for a snapshot is the same as the snapshot time.

Fast cache hits. We rely on state-tracking for cache invalidation.
In our experience, clients are chatty and repeatedly poll resources
of interest much more frequently than resources change. Therefore,
we want a low-latency but correct method to determine the current
ETag and handle condition processing headers. We address this
concern with several related techniques:

ERM caching in the Python service.
Indexed query to determine current version.
Connection pooling for SQL plan caching.
Composite ETag combining version, client identity, and content-
negotiation values to avoid incorrect cache hits.

These features allow cache hits to be handled on a fast path through
the service logic which has almost no wasted work when a mis-
match is detected and the request processing expands with gener-
alized (and slower) logic to complete handling of the request.

We do not currently implement any response caching on the
server side. In the presence of fine-grained, data-dependent poli-
cies, the responses may be unique for each client and therefore
would limit the benefit and increase the cost of server-side caching.
However, client-side caching works very well to reduce processing
costs on our servers, as described in Section 9.

9 EVALUATION AND DISCUSSION

We have developed and operated ERMREST and companion client
software in several ongoing bioinformatics research projects. The
service saw its first pilot application in late 2015 and has remained
in continuous use. Here, we report qualitative observations from
five deployments for the period 2018-01-13 to 2018-02-12 and also
quantitative results for a synthetic benchmark effort.

9.1 Deployments

ERMREST has been used in scientific collaborations spanning from
small teams engaged in data collection and analysis for basic science,
to large, multi-national consortium producing data repositories.
These include:

o The microscopy core for the Center for Regenerative Medicine
and Stem Cell Research (CIRM), offering microscope slide-
scanning as a service;

o The NIDCR FaceBase project, organizing a central repository
for data generated by a number of spoke sites;

e The GPCR Consortium, an international collaboration to
discover and analyze G-Protein Coupled Receptor molecular
structures;

e The NIDDK GUDMAP/RBK projects, curating microscope
imagery and sequencing data with assessments and annota-
tions by domain-experts;

ERMREST: A web service for collaborative data management

e Mapping the Dynamic Synaptome, an NIH-funded multidis-
ciplinary effort to develop methods for in vivo measurement
of the synaptome.

We report here on activity logs collected from our production cata-
logs over a representative one month period.

Table 3: Catalog ERM and data characteristics for five
projects.

Metrics CIRM FB | GPCR | GUDMAP | Synapse
#tables 29 107 85 20 29
#cols tot. 246 | 1.0k 845 2.6k 265
widest table 50 37 83 48 33
95t table 16 | 20 31 31 33
50" table 9 7 6 8 10
in avg. row 13 16 7 20 25
#rows tot. 39k | 23k | 7.5M 12M 3.8k
largest table | 22k | 4.1k | 5.8M 11M 2k
95”1 table 6.9k | 788 88k 37k 825
50" table 11| 28| 357 7 13

Catalog characteristics. Our long-tail science catalogs are quite
small in systems-engineering terms, and the complexity of the ERM
can vary greatly depending on the community and their problem do-
main, and particularly when “legacy” metadata has been imported
from long-running projects.

Table 3 summarizes the basic shape of our five production cat-
alogs which have each accumulated 1-3 years of ERMREsT-based
collaboration. Shown are the total number of tables, column count
statistics (across the whole ERM; for the maximum, 95¢ h, and 50%"
percentile table widths; and for an average row across all tables),
and row count statistics (across the whole catalog, and for the max-
imum, 95", and 50" percentile table lengths). In GUDMAP and
GPCR, the two catalogs with millions of rows rather than mere
thousands, the sets of user-managed entities are qualitatively simi-
lar to those in our smaller project catalogs. The millions of extra
rows come from bulk import of external data: large term lists from
external ontologies and detailed manifests of large digital assets
such as gene expression micro-array assays and protein sequence
data.

Apart from GPCR, all catalogs have extended their ERMs with
the five extra system columns described in Section 3. In general, the
non-vocabulary tables grow over time at the somewhat steady rate
that experiments are performed by human participants. Vocabulary
and other bulk-imported tables can grow in fits and spurts as col-
laborators revisit nomenclature debates and evolve their catalog’s
ERM.

Observed workload. Human-driven science catalogs are also
quite idle by contemporary web service standards. Table 4 breaks
down the month of logged requests by category. During the re-
porting month, our production ERMREST services experienced a
peak request load of 627 requests in one minute and 175 requests
in one second. More significantly, these servers averaged less than
1.5 requests per minute, meaning that there are long periods of
inactivity punctuated by periods of modest load. These catalogs
saw a combined data read:write request ratio ratio of over 22:1, and

SSDBM’18, July 2018, Italy

Table 4: Request workload 2018-01-13 to 2018-02-12.

Metrics CIRM FB | GPCR | GUDMAP | Synapse
#reqs 13.6k | 62.6k | 14.6k 51.1k 56.8k
peak minute | 0.14k | 0.57k | 0.21k 0.58k 0.63k
peak second 45 175 72 80 74
#data writes | 0.93k | 1.1k | 1.9k 0.94k 2.9k
#data reads 11k | 55k | 12k 44k 52k
cached 34% | 28% | 46% 32% 59%
#ERM writes 0 33 0 0.16k 0.13k
#ERM reads 1.5k | 2.9k | 0.78k 5.5k 1.6k
cached 75% | 73% | 73% 81% 82%

Table 5: Request latency logged on server 2018-01-13 to 2018-
02-12 for data writes, cached data reads, and uncached data
reads.

Metrics (ms) CIRM | FB | GPCR | GUDMAP | Synapse
avg. write 187 27 | 14,485 370 22
avg. cached 14| 14 11 28 14
avg. uncached 116 | 34 121 587 36
50" uncached | 37 | 18 31 70 15
90" uncached 183 | 76 235 682 59
99" uncached 1,314 | 196 | 2,226 4,900 555

a combined cache hit rate of 39.9% and 78.1% on data and ERM
reads, respectively.

Observed performance. Our project servers are not running
identical ERMREST releases, but still have qualitatively similar per-
formance. Median data read latency is well under 100 milliseconds
and 90% of reads under 1 second, suitable for interactive use in
web-based user interfaces. Table 5 breaks down the logged data
requests by category and latency. Most projects also show very
reasonable data write latency; GPCR is an outlier with slow writes
due to an unusual legacy workload involving frequent bulk insert-
or-update requests to synchronize with a large external table source.
All projects show a long-tail distribution of data read latencies with
the majority being quite fast and a small percentage increasing in
cost due to much more complex structural queries. All catalogs
show consistently low latency for cache hits.

All five deployments run on one physical host, each within a sep-
arate virtual machine (VM) running Fedora 26 and PostgreSQL 9.6
or newer. Each VM is allocated 8-16 GB of RAM which is shared
between ERMREST, PostgreSQL, Apache HTTPD, and other project-
specific software. The backing storage for all the PostgreSQL in-
stances in the VMs is capacity-optimized rather than speed-optimized
with a hardware RAID 6 configuration on bulk nearline storage.

9.2 Benchmarks

Our production systems vary in ERM complexity, table sizes, work-
load, software versions, and policy configuration. It is difficult to
draw quantitative lessons from their empirical performance, other
than the general observation that they are “fast enough” and sup-
port their ongoing collaborations. The general performance charac-
teristics of a database system like PostgreSQL are a complex topic

SSDBM’18, July 2018, Italy

in their own right, well beyond the scope of this article. We devel-
oped a simple, synthetic benchmark to examine the practical cost
of several ERMREST features under a simplified model of typical
metadata catalog operations.

Compared features. We permute the following ERM features
to form a family of benchmarking scenarios:

e Baseline: assume k columns of user-driven content;
e System columns: add 5 standard columns;

e Row-ownership: a data-dependent access rule;

e B-tree: btree indexing on each column;

e Tri-gram: trgm indexing on each column.

We calculate incremental costs as differences between the median
round-trip times measured for scenarios differing in only one fea-
ture. The added indexes do not benefit the simple test requests
in any way, but have substantial maintenance costs we wish to
measure. We know that having such indexes present can help our
most complex user-driven queries, and we want to understand the
performance penalty incurred by aggressively generating column
indexes rather than expecting administrators to carefully design a
minimal indexing scheme for each catalog.

Test environment. Our test machine for synthetic measure-
ment has a single 6-core Intel Xeon E5-1650v3 processor and 64 GB
of error-correcting RAM, approximating an affordable mid-range
server. To better represent a modern but modest storage system,
we also chose a mid-range, SATA-based Intel DC S3500-series SSD.
We tested our ERMREST development branch on Fedora 27 using
PostgreSQL 10.2.

Operating regime. Observing our real-world catalogs, we know
that most user-managed tables have fewer than 100k rows, and
most requests are simple data reads easily supported by primary
key indexing on tables. On those catalogs small percentage of read
requests are complex ERM-specific queries which are infeasible to
reproduce in a simple, synthetic test procedure.”

Other test variables. We simulate a catalog at different phases
in its lifecycle of steady growth by repeating measurements against
tables prepared with different numbers of pre-existing rows. The
ERMREST interface is tuned for paginated access to data. Our pro-
duction systems typically experience request sizes of 1 or 5-20 rows
for interactive browsing of single entities or small search result
sets, respectively. We simulated a range of pagination scenarios by
testing with different request sizes, but present most results below
for a fixed scenario with 10 rows per request.

Test procedure. Our benchmark sweeps through a set of table-
definition scenarios, table-size, and request-size parameters to gather
ten samples at each point in the parameter space. These tests focus
on simple, single-table access scenarios which are somewhat sym-
metric between insert, update, read, and delete operations. We force
a synchronous VACUUM command to simulate rest periods which
occur on production systems. The high duty-cycle of writes in
our benchmark would otherwise overwhelm the background table
maintenance in PostgreSQL and distort our results. Each benchmark
run takes approximately 10 hours to complete.

"We expect to evaluate these more challenging queries in future empirical studies of
real-world systems. Such studies will benefit from longer-running ERMREST catalogs
collecting historical data and query logs, so that we may reproduce different storage
configurations and replay different test workloads in a controlled laboratory setting.

K. Czajkowski et al.

+hist
+rown
+rgm
+htree

0.02

iiiiiiﬁ alll

(e} c o =]
=1 =3 =1 =}

+syscols
baseline20

ERECOO

Seconds
=

A0T D
00T 2
WT D
F0TN
oot n
wrn
AT
00T o
WT
q0Ta
Hoota
wta

Figure 2: Round-trip HTTPS times to (C) create; (U) update;
(R) read; and (D) delete 10 rows per request for varying ta-
ble sizes. Each stacked bar represents differential costs of
ERMREST features.

[
=]
S

B +5yscols
X h——x
_ 5 4 +hiree
[=2)
2 —— +rgm
b —t—p—t —s— rom
% 2 A_JF_/ rown
gy "
2 .-t hist
@ 10 + L
o ———x
5 - -
o 5 & .. _..&
= * - -
o
2
§ 2
s | Ea
*® n -
M S
5 (]
0O 00 0 CcC € cCc P W WDV O OO O
O 2 B P O B B B OB 2 B O B e g
S o = S o = S o = o o =z
= 3 = 3 = 3 = S
= = = =

Figure 3: Overhead percentages for (C) create; (U) update; (R)
read; and (D) delete while varying table size for a fixed re-
quest size of 10 rows.

Our service implementation does not provide any real-time la-
tency guarantees, and there are costs sporadically incurred on re-

quests due to various levels of resource reclamation and re-initialization

within service components. Our benchmark introduces randomized,
unmeasured “filler” requests to ensure that we are measuring a typi-
cal steady-state service condition and that any of these periodic and
aperiodic latency penalties are distributed over all measurements,
rather than accidentally biasing a particular step in the benchmark
parameter sweep.

In practice, our benchmark resets the entire ERMREST service
state to a known ground state when destroying the catalog in each
iteration of the outer test loop. The inner loops proceed with a sin-
gle sequential, connection-pooling Python client using HTTPS 1.1
protocol.

Measured results. Figure 2 shows median feature costs with
request size fixed at 10 rows per request and a representative table
definition including 20 columns of non-system metadata. For the

ERMREST: A web service for collaborative data management

--B- +syscols
--#- +hiree
—— +trgm
=¥ +rown
+hist

Overhead percentage (log)

12
n
orn
00T N
AT N
A0TN

==
0T O ¢
u
AR

012
00T 2
AT D
ota
oot a
ATa
A0Ta

Figure 4: Overhead percentages for (C) create; (U) update; (R)
read; and (D) delete while varying request size for a fixed
table size of 100k pre-existing rows.

four data access methods, round-trip times are tested at 5 different
table sizes (0, 10k, 100k, and 1M pre-existing rows). This test sce-
nario coincides with typical paginated access patterns we might
see in our production catalogs.

Across the tested range of table sizes, data retrieval with static
access control is consistently beneath 4ms and remains under 7ms
with a simple row-ownership dynamic access control check. Base-
line data mutation requests are all slower by a factor of 2-3x, with
deletion being cheapest and insertion the most expensive. The ad-
dition of system columns adds approximately 0.2ms to each read,
update, and deletion request due to the increase in row size from 20
to 25 columns, while adding 0.4-0.8ms to insertion requests. There is
no discernible relationship between table size and baseline request
costs in the tested range.

The indexing and history-collection features have essentially no
impact on read requests.® These features have substantial cost for
data mutation requests, because they introduce additional database
“write amplifying” maintenance work that PostgreSQL performs
as part of each change to catalog storage. The btree indexing is
cheapest, followed by trgm indexing, and then by history collec-
tion. These maintenance costs also show a clear trend where costs
increase with the size of the pre-existing table, as maintenance
work includes adjusting tree-like structures in the database rather
than purely localized changes to the affected rows. Update requests
become the most expensive access method on large tables, because
they involve twice the history maintenance cost as old row snap-
shots and new row snapshots must both be written to record each
change.

In spite of the higher mutation costs, all access methods perform
well with less than 25ms of round-trip latency for this regime of
small paginated requests. Figure 3 depicts the same measurements
as in Figure 2 using a vertical scale representing feature overhead as
a percentage of the baseline request round-trip time. An overhead
of 0% would have no cost, while an overhead of 100% would indicate

8The tested query accesses the live catalog and not a historical snapshot, while using
basic row primary keys for selection so the addition or absence of optional column
indexes do not affect the PostgreSQL query plan.

SSDBM’18, July 2018, Italy

a doubling of round-trip time. We believe that overhead values at
or around 1% are insignificant, as these differences in median time
are well within the typical request-to-request variance.

Finally, Figure 4 depicts a complementary set of feature overhead
measurements, where we vary the request size (1, 10, 100, 1k, and
10k rows per request) while fixing the pre-existing table size at
100k rows. Here, the per-request cost of the features dominates
requests with 1-10 rows. However, as request sizes increase from
100-1k, the per-row costs begin to dominate and most overhead
curves begin to roll off towards a fixed cost percentage. We believe
that this linear behavior continues for several orders of magnitude,
based on isolated experiments with the database; however, such
large requests have too high of a round-trip latency to be useful in a
synchronous web service, where messages may be lost and require
re-transmission, and most HTTP middleware will report timeout
errors and abandon requests due to lack of timely response.

Concluding observations. Our synthetic tests confirm our ex-
pectation that history-collection and aggressive indexing features
have manageable overhead in our target operating regime with
many small requests in a read-heavy duty-cycle. These features
only incur a penalty for write access and we argue that this penalty
is worthwhile due to the potential enrichment it can bring to sub-
sequent data consumption. Evaluation and measurement of these
enrichments is left for future work.

Only at large request sizes do the feature costs reported here
begin to interfere with service utility. Baseline data mutation re-
quests that may have been acceptable (even if slow) may become
20-50x slower with all optional features enabled, causing requests to
become too slow for practical use in a synchronous HTTP setting.
However, such large requests are not the product of interactive
human use and so should not be considered a road-block. Batch
ingestion of large metadata can be implemented by unattended
processes which can generate streams of smaller requests to work
well with the current ERMREST APISs, or asynchronous web inter-
faces could be defined for cases where large batch requests must
be performed under atomic access guarantees.

10 RELATED WORK

Data publication systems [4, 11] generally focus on the organiza-
tion, annotation, and dissemination of scientific data and results.
They allow scientists to describe published data objects with sim-
ple descriptive metadata in line with Dublin Core, which covers
the basic publication metadata. These approaches grew out of the
(book) publishing industry and while useful guides for scientific
data publication, they only address “findability” in the sense of sim-
ple indexing and registries of data. Our approach empowers science
users with the ability to generate rich domains of information based
on the ERM model in a manner that facilitates early collaboration
through publication. While the simple publication schemes only
allow for finding data in a registry, our approach allows science
users to collaborate throughout active research activities and to
publish enough details about their data to enable other users to
understand what processes created the data and how to reuse them.

Scientific metadata and metadata catalog systems have been an
area of intense research interest. These systems are used as the cen-
terpiece in collaborative data management, often for large e-science

SSDBM’18, July 2018, Italy

applications in physical sciences but increasingly in other domains
as well. In many ways, metadata catalog systems share much in
common with data publication systems, differing mainly in the
intended audience and data life cycle they support. Where data pub-
lication focused on public dissemination of finished data products,
metadata catalogs have supported data sharing within collabora-
tions during active research. Like publication systems, metadata
catalogs have generally offered only simple key-value models for
describing data [5, 7, 8], thus they also share their limitations for
describing data sufficiently for use and reuse by others outside the
collaboration. Some have explored richer semantic models [12, 13],
however, we believe the ERM approach is more suitable for scien-
tists who lack in-depth training in semantic web and scientific data
curation.

Shared or collaborative database use is another topic that has
been explored by others. OGSA-DAI [2] offered science collabora-
tions access to database services for a variety of purposes using
Grid protocols. Our approach differs by offering simpler interfaces
for data management over standard Web protocols and ours is ap-
proachable to users in the “long-tail” who do not necessarily have
the training necessary to operate Grid services. SQLShare [6] pro-
vides a cloud hosted database service for science users. SQLShare
and ERMREST share a focus on enabling users in the “long-tail” with
powerful tools for data collaboration. But, SQLShare focuses on
data analysis workloads through the SQL language while ERMREST
covers workloads involving data creation and offers simpler data
interfaces. Finally, others have also attempted to map ERM concepts
to Web protocols, such as HTSQL [1]. Unlike ERMRrEsT, HTSQL
does not provide support for model introspection, model evolution,
content update, history, nor differentiated access control, where
individual rows may be visible to some clients but not others.

11 CONCLUSION

We have summarized major challenges faced in many scientific
data management and collaboration problems, and we have intro-
duced ERMREST, a web-based metadata catalog addressing these
problems. We have presented ERMREST key features, design ob-
jectives, architecture, and implementation, and demonstrated how
ERMREST can rapidly adapt to many diverse data types and sup-
ports continuous FAIRness through mutable storage, fine-grained
access control, automated creation of non-mutable global unique
IDs for every data element, versioning, and provenance. Qualitative
observations from ERMREST deployments and quantitative results
from a synthetic benchmark are provided.

We found that ERMREST usually performs fast enough to support
interactive use in browser-based web applications in five research
consortia. Interactive latency suffers for a small number of complex
structural metadata queries we have attempted in our projects, and
for those cases we must consider conventional database perfor-
mance tuning practices such as improving indexes or investing in
storage and computing hardware capability. Future work is required
in this area, to explore query workloads from real projects and con-
sider whether there are any web service interface changes which
might enable the expression of ERMREST searches while generating
SQL queries which the database can execute more rapidly.

K. Czajkowski et al.

Not all of our deployments have utilized the recent history fea-
ture. We plan to roll this feature out and gain more experiences from
our user communities. Possible areas for future work in ERMREST
include: refinement of the HTTP data access interface for PATCH
scenarios; asynchronous interfaces for large batch requests or those
involving multiple input or output table representations; perfor-
mance evaluation and optimization for access to historical snapshot
content; new longitudinal history access interfaces to support use
cases such as viewing the history of one entity or summarizing the
changes made by one request; and lastly, review of model evolu-
tion experiences from projects to identify any enhancements to the
ERM meta-model which might improve the usability of ERMREST
in complex, evolving collaborations.

ERMREsT and ERMREST-based tools are open-source and are pub-
licly available on GitHub (github.com/informatics-isi-edu/ermrest).

ACKNOWLEDGMENTS

This work is supported by the National Institutes of Health un-
der awards U54EB020406. 1R01MH107238, 5U01DE024449, and
1U01DK107350

REFERENCES

[1] 2012. HTSQL Web Site. (2012). http://www.htsql.org

[2] Mario Antonioletti, Malcolm Atkinson, Rob Baxter, Andrew Borley, Neil P

Chue Hong, Brian Collins, Neil Hardman, Alastair C Hume, Alan Knox, Mike

Jackson, et al. 2005. The design and implementation of Grid database services in

OGSA-DAL Concurrency and Computation: Practice and Experience 17, 2-4 (2005),

357-376.

Christine L. Borgman, Milena Golshan, Ashley Sand, Jillian Wallis, Rebekah

Cummings, Peter Darch, and Bernadette Randies. 2002. Data Management in

the Long Tail: Science, Software, and Service. International Journal of Digital

Curation 11, 1 (2002), 128-149.

[4] Kyle Chard, Jim Pruyne, Ben Blaiszik, Rachana Ananthakrishnan, Steven Tuecke,
and Ian Foster. 2015. Globus data publication as a service: Lowering barriers
to reproducible science. In e-Science (e-Science), 2015 IEEE 11th International
Conference on. IEEE, 401-410.

[5] Ewa Deelman, Gurmeet Singh, Malcolm P Atkinson, Ann Chervenak, NP Chue
Hong, Carl Kesselman, Sonal Patil, Laura Pearlman, and Mei-Hui Su. 2004. Grid-
based metadata services. In Scientific and Statistical Database Management, 2004.
Proceedings. 16th International Conference on. IEEE, 393-402.

[6] Bill Howe, Garret Cole, Emad Souroush, Paraschos Koutris, Alicia Key, Nodira

Khoussainova, and Leilani Battle. 2011. Database-as-a-service for long-tail science.

In International Conference on Scientific and Statistical Database Management.

Springer, 480-489.

Birger Koblitz, Nuno Santos, and V Pose. 2008. The AMGA metadata service.

Journal of Grid Computing 6, 1 (2008), 61-76.

[8] Arcot Rajasekar, Reagan Moore, Chien-yi Hou, Christopher A Lee, Richard Mar-
ciano, Antoine de Torcy, Michael Wan, Wayne Schroeder, Sheau-Yen Chen, Lucas
Gilbert, et al. 2010. iRODS Primer: integrated rule-oriented data system. Synthesis
Lectures on Information Concepts, Retrieval, and Services 2, 1 (2010), 1-143.

[9] Andreas Rauber, Ari Asmi, Dieter van Uytvanck, and Stefan Proell. 2016. Data

Citation of Evolving Data. Recommendations of the Working Group on Data

Citation (WGDC). https://doi.org/10.15497/RDA00016

Robert Schuler, Carl Kesselman, and Karl Czjakowski. 2016. Accelerating data-

driven discovery with scientific asset management. In IEEE 12th International

Conference on eScience. IEEE.

[11] MacKenzie Smith, Mary Barton, Mick Bass, Margret Branschofsky, Greg McClel-
lan, Dave Stuve, Robert Tansley, and Julie Harford Walker. 2003. DSpace: An open
source dynamic digital repository. Technical Report.

[12] Rattapoom Tuchinda, Snehal Thakkar, Yolanda Gil, and Ewa Deelman. 2004.
Artemis: Integrating scientific data on the grid. In AAAL 892-899.

[13] Xinqi Wang, Dayong Huang, Ismail Akturk, Mehmet Balman, Gabrielle Allen,
and Tevfik Kosar. 2009. Semantic enabled metadata management in PetaShare.
International Journal of Grid and Utility Computing 1, 4 (2009), 275-286.

[14] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E Bourne, et al. 2016. The FAIR Guiding Principles for
scientific data management and stewardship. Scientific data 3 (2016), 160018.

B3

—
)

=
S

http://www.htsql.org
https://doi.org/10.15497/RDA00016

	Abstract
	1 Introduction
	2 Requirements
	3 Entity Relationship Model
	4 ERMrest as a Web service
	5 Fine-grained Policy
	5.1 Access Modes
	5.2 Dynamic Policy Details

	6 History
	6.1 Catalogs and Catalog Snapshots
	6.2 History Management

	7 Persistent Identifiers
	8 Interface and Implementation
	9 Evaluation and Discussion
	9.1 Deployments
	9.2 Benchmarks

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

