Publications

Applying multivariate segmentation methods to human activity recognition from wearable sensors’ data

Abstract

Background: Time-resolved quantification of physical activity can contribute to both personalized medicine and epidemiological research studies, for example, managing and identifying triggers of asthma exacerbations. A growing number of reportedly accurate machine learning algorithms for human activity recognition (HAR) have been developed using data from wearable devices (eg, smartwatch and smartphone). However, many HAR algorithms depend on fixed-size sampling windows that may poorly adapt to real-world conditions in which activity bouts are of unequal duration. A small sliding window can produce noisy predictions under stable conditions, whereas a large sliding window may miss brief bursts of intense activity.
Objective: We aimed to create an HAR framework adapted to variable duration activity bouts by (1) detecting the change points of activity bouts in a multivariate time series and (2) predicting activity for each homogeneous window defined by these change points.
Methods: We applied standard fixed-width sliding windows (4-6 different sizes) or greedy Gaussian segmentation (GGS) to identify break points in filtered triaxial accelerometer and gyroscope data. After standard feature engineering, we applied an Xgboost model to predict physical activity within each window and then converted windowed predictions to instantaneous predictions to facilitate comparison across segmentation methods. We applied these methods in 2 datasets: the human activity recognition using smartphones (HARuS) dataset where a total of 30 adults performed activities of approximately equal duration (approximately 20 seconds each) while …

Date
February 7, 2019
Authors
Kenan Li, Rima Habre, Huiyu Deng, Robert Urman, John Morrison, Frank D Gilliland, José Luis Ambite, Dimitris Stripelis, Yao-Yi Chiang, Yijun Lin, Alex AT Bui, Christine King, Anahita Hosseini, Eleanne Van Vliet, Majid Sarrafzadeh, Sandrah P Eckel
Journal
JMIR mHealth and uHealth
Volume
7
Issue
2
Pages
e11201
Publisher
JMIR Publications Inc., Toronto, Canada