Publications

The generalization and robustness of transformer-based language models on commonsense reasoning

Abstract

The advent of powerful transformer-based discriminative language models and, more recently, generative GPT-family models, has led to notable advancements in natural language processing (NLP), particularly in commonsense reasoning tasks. One such task is commonsense reasoning, where performance is usually evaluated through multiple-choice question-answering benchmarks. Till date, many such benchmarks have been proposed andleaderboards' tracking state-of-the-art performance on those benchmarks suggest that transformer-based models are approaching human-like performance. However, due to documented problems such as hallucination and bias, the research focus is shifting from merely quantifying accuracy on the task to an in-depth, context-sensitive probing of LLMs' generalization and robustness. To gain deeper insight into diagnosing these models' performance in commonsense reasoning scenarios, this thesis addresses three main studies: the generalization ability of transformer-based language models on commonsense reasoning, the trend in confidence distribution of these language models confronted with ambiguous inference tasks, and a proposed risk-centric evaluation framework for both discriminative and generative language models.

Date
March 24, 2024
Authors
Ke Shen
Journal
Proceedings of the AAAI Conference on Artificial Intelligence
Volume
38
Issue
21
Pages
23419-23420