Publications

ARTI-6: Towards Six-dimensional Articulatory Speech Encoding

Abstract

We propose ARTI-6, a compact six-dimensional articulatory speech encoding framework derived from real-time MRI data that captures crucial vocal tract regions including the velum, tongue root, and larynx. ARTI-6 consists of three components: (1) a six-dimensional articulatory feature set representing key regions of the vocal tract; (2) an articulatory inversion model, which predicts articulatory features from speech acoustics leveraging speech foundation models, achieving a prediction correlation of 0.87; and (3) an articulatory synthesis model, which reconstructs intelligible speech directly from articulatory features, showing that even a low-dimensional representation can generate natural-sounding speech. Together, ARTI-6 provides an interpretable, computationally efficient, and physiologically grounded framework for advancing articulatory inversion, synthesis, and broader speech technology applications. The source code and speech samples are publicly available.

Date
September 25, 2025
Authors
Jihwan Lee, Sean Foley, Thanathai Lertpetchpun, Kevin Huang, Yoonjeong Lee, Tiantian Feng, Louis Goldstein, Dani Byrd, Shrikanth Narayanan
Journal
arXiv preprint arXiv:2509.21447